cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086974 Numbers of the form p^2 * q * r with distinct primes p, q and r such that p^2 < q*r.

Original entry on oeis.org

60, 84, 90, 126, 132, 140, 156, 198, 204, 220, 228, 234, 260, 276, 306, 308, 315, 340, 342, 348, 364, 372, 380, 414, 444, 460, 476, 492, 495, 516, 522, 532, 558, 564, 572, 580, 585, 620, 636, 644, 650, 666, 693, 708, 732, 738, 740, 748, 765, 774, 804
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 25 2003

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{f = SortBy[FactorInteger[n], Last]}, f[[;;, 2]] == {1, 1, 2} && f[[1, 1]] * f[[2, 1]] > f[[3, 1]]^2]; Select[Range[1000], q] (* Amiram Eldar, Sep 15 2024 *)

Formula

A002033(a(n)-1) = 44. - Juri-Stepan Gerasimov, Sep 26 2009

Extensions

Incorrect comment removed by Charles R Greathouse IV, Mar 22 2010

A353423 For even n, a(n) = -Sum_{d|n, dA064989(n)), with a(1) = 1.

Original entry on oeis.org

1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -2, -1, -1, -1, 0, -1, 0, -1, -2, -1, -1, -1, -8, 0, -1, 0, -2, -1, -5, -1, 0, -1, -1, -1, 0, -1, -1, -1, -8, -1, -5, -1, -2, -2, -1, -1, -96, 0, 0, -1, -2, -1, 0, -1, -8, -1, -1, -1, -70, -1, -1, -2, 0, -1, -5, -1, -2, -1, -5, -1, 0, -1, -1, 0, -2, -1, -5, -1, -96, 0, -1, -1, -70
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2022

Keywords

Comments

Apparently, for all i, j >= 1, A077462(i) = A077462(j) => a(i) = a(j).

Crossrefs

Cf. A070003 (positions of 0's), A167171 (positions of -1's), A096156 (positions of -2's), A007304 (positions of -5's), A086975 (positions of -70's), all these are so far conjectural. Also a subsequence of A178739 seems to give the positions of -96's.
Cf. also A353454, A353457, A353458, A353467 for similar recurrences.

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    memoA353423 = Map();
    A353423(n) = if(1==n,1,my(v); if(mapisdefined(memoA353423,n,&v), v, if(!(n%2), v = -sumdiv(n,d,if(dA353423(n/2)*A353423(d),0)), v = A353423(A064989(n))); mapput(memoA353423,n,v); (v)));

Formula

a(p) = -1 for all primes p.
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.

A369209 Numbers whose number of divisors has the largest prime factor 3.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 32, 36, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 96, 98, 99, 100, 108, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 160, 164, 169, 171, 172, 175, 180, 188, 196, 198, 200, 204, 207, 212, 220, 224, 225, 228
Offset: 1

Views

Author

Amiram Eldar, Jan 16 2024

Keywords

Comments

Subsequence of A059269 and first differs from it at n = 36: A059269(136) = 44 has 15 = 3 * 5 divisors and thus is not a term of this sequence.
Numbers k such that A000005(k) is in A065119.
Numbers k such that A071188(k) = 3.
Equals the complement of A354181, without the terms of A036537 (i.e., complement(A354181) \ A036537).
The asymptotic density of this sequence is Product_{p prime} (1-1/p) * (Sum_{k>=1} 1/p^(A003586(k)-1)) - A327839 = 0.26087647470200496716... .

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; Select[Range[300], gpf[DivisorSigma[0, #]] == 3 &]
  • PARI
    gpf(n) = if(n == 1, 1, vecmax(factor(n)[, 1]));
    is(n) = gpf(numdiv(n)) == 3;
Showing 1-3 of 3 results.