A087003 a(2n) = 0 and a(2n+1) = mu(2n+1); also the sum of Mobius function values computed for terms of 3x+1 trajectory started at n, provided that Collatz conjecture is true.
1, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- G. P. Michon, The Collatz problem.
- G. P. Michon, Multiplicative functions.
- Index entries for sequences related to 3x+1 (or Collatz) problem
Crossrefs
Programs
-
Mathematica
c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] lf[x_] := Length[fpl[x]] Table[Apply[Plus, Table[MoebiusMu[Part[fpl[w], j]], {j, 1, lf[w]}]], {w, 1, 256}] Riffle[MoebiusMu[Range[1,121,2]],0] (* Harvey P. Dale, Jan 24 2025 *)
-
PARI
A006370(n) = if(n%2, 3*n+1, n/2); \\ This function from Michael B. Porter, May 29 2010 A087003(n) = { my(s=1); while(n>1, s += moebius(n); n = A006370(n)); (s); }; \\ Antti Karttunen, Sep 14 2017
-
PARI
a(n)={sumdiv(n, d, my(e=valuation(d, 2)); if(d==1<
Andrew Howroyd, Aug 04 2018 -
PARI
A087003(n) = ((n%2)*moebius(n)); \\ Antti Karttunen, Sep 01 2018
Formula
Moebius transform of A209229. - Andrew Howroyd, Aug 04 2018
From Jianing Song, Aug 04 2018: (Start)
Multiplicative with a(2^e) = 0, a(p^e) = (-1 + (-1)^e)/2 for odd primes p.
Dirichlet g.f.: 1/((1 - 2^(-s))*zeta(s)).
(End)
From Antti Karttunen, Sep 01 2018: (Start)
(End)
Sum_{n>=1} a(n)/n^2 = A217739 . Sum_{n>=1} a(n)/n^3 = A233091. Sum_{n>=1} a(n)/n^4 = A300707. - R. J. Mathar, Dec 17 2024
Extensions
a(2n) = 0, a(2n+1) = mu(2n+1) added to the name as the new primary definition by Antti Karttunen, Sep 18 2017
Comments