A378680 a(n) = numerator(Sum_{k=1..n} 1/P_2(k)), where P_2(k) = A087040(k) is the second largest prime dividing the k-th composite number.
1, 1, 3, 11, 7, 17, 10, 11, 25, 9, 5, 16, 35, 19, 98, 211, 221, 118, 41, 87, 271, 143, 146, 151, 317, 109, 57, 176, 367, 377, 196, 407, 2879, 2921, 997, 516, 1583, 1604, 3313, 3383, 1744, 593, 1221, 3733, 1919, 388, 395, 811, 275, 1389, 4237, 2171, 2192, 4489
Offset: 1
Examples
Fractions begin: 1/2, 1, 3/2, 11/6, 7/3, 17/6, 10/3, 11/3, 25/6, 9/2, 5, 16/3, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Jean-Marie De Koninck, Sur les plus grands facteurs premiers d'un entier, Monatshefte für Mathematik, Vol. 116, No. 1 (1993), pp. 13-37; alternative link; author's copy.
Programs
-
Mathematica
p2[c_] := Module[{f = FactorInteger[c]}, If[f[[-1, 2]] > 1, f[[-1, 1]], f[[-2, 1]]]]; Numerator@ Accumulate[Table[1/p2[c], {c, Select[Range[100], CompositeQ]}]]
-
PARI
lista(nmax) = {my(s = 0); forcomposite(n = 1, nmax, f = factor(n); s += if(f[#f~, 2] > 1, 1/f[#f~, 1], 1/f[#f~ - 1, 1]); print1(numerator(s), ", "));}
Formula
a(n)/A378681(n) = Sum_{k=1..m} c_k * n/log(n)^k + O(n/log(n)^(m+1)) for any integer m >= 1, where c_k are constants. c_1 = Sum_{k>=1} (1/k)*Sum_{p prime > P(k)} 1/p^2 = Sum_{p prime} (1/p^2)*Product_{primes q < p} (1/(1-1/q)) = 1.254435359..., where P(k) = A006530(k) is the greatest prime dividing k for k >= 2, and P(1) = 1.
Comments