cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087054 Primes of the form pq + qr + rp where p, q and r are distinct primes.

Original entry on oeis.org

31, 41, 59, 61, 71, 101, 103, 113, 131, 151, 167, 191, 199, 211, 227, 239, 241, 251, 263, 269, 271, 281, 293, 311, 331, 347, 359, 383, 401, 419, 421, 431, 439, 461, 467, 479, 487, 491, 503, 521, 541, 563, 571, 587, 599, 607, 617, 631, 641, 647, 653, 661, 691
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 07 2003

Keywords

Examples

			A003415(2*3*19)=2*3+3*19+19*2=101=A000040(26), therefore 101 is a term (but also A003415(2*5*13)=2*5+5*13+13*2=101).
		

Crossrefs

Cf. A087053 (numbers of the form pq+qr+rp).
Cf. A189759 (p*q*r for primes of this form).

Programs

  • Mathematica
    sumProd[p_,q_,r_]:=p*q+p*r+q*r; pqrPrimes[nn_] := Module[{p=Prime[Range[PrimePi[(nn-6)/5]+1]],i,j,k,n}, Union[Reap[i=0; While[i++; sumProd[p[[i]],p[[i+1]],p[[i+2]]] <= nn, j=i; While[j++; sumProd[p[[i]],p[[j]],p[[j+1]]] <= nn, k=j; While[k++; n=sumProd[p[[i]],p[[j]],p[[k]]]; n <= nn, If[PrimeQ[n], Sow[n]]]]]][[2,1]]]]; pqrPrimes[1000] (* T. D. Noe, Apr 27 2011 *)
    nn=100;Take[Select[Union[Total[Times@@@Subsets[#,{2}]]&/@Subsets[ Prime[ Range[ nn]],{3}]],PrimeQ],nn] (* Harvey P. Dale, Jan 08 2013 *)
  • PARI
    list(lim)=my(v=List()); forprime(r=5, (lim-6)\5, forprime(q=3, min((lim-2*r)\(r+2), r-2), my(S=q+r, P=q*r); forprime(p=2, min((lim-P)\S, q-1), isprime(p*S+P) && listput(v,p*S+P)))); Set(v) \\ Charles R Greathouse IV, Feb 26 2014
    
  • PARI
    is(n)=forprime(r=(sqrtint(3*n-3)+5)\3, (n-6)\5, forprime(q= sqrtint(r^2+n)-r+1, min((n-2*r)\(r+2), r-2), if((n-q*r)%(q+r)==0 && isprime((n-q*r)/(q+r)), return(isprime(n))))); 0 \\ Charles R Greathouse IV, Feb 26 2014

Extensions

Corrected by T. D. Noe, Apr 27 2011