cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087124 a(n) = Fibonacci(n) + Fibonacci(2n+1).

Original entry on oeis.org

1, 3, 6, 15, 37, 94, 241, 623, 1618, 4215, 11001, 28746, 75169, 196651, 514606, 1346879, 3525565, 9229062, 24160401, 63250167, 165586906, 433505383, 1134920881, 2971243730, 7778788417, 20365086099, 53316412566, 139584058863
Offset: 0

Views

Author

Paul Barry, Aug 15 2003

Keywords

Comments

Binomial transform of A087123.
For n>=1, a(n) is the coefficient of x in the reduction by x^2->x+1 of the polynomial 1+x^n+x^(2n+1). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. - Clark Kimberling, Jul 01 2011

Crossrefs

Programs

  • Magma
    [Fibonacci(n)+Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Mar 13 2012
    
  • Mathematica
    CoefficientList[Series[(1-2*x)*(1+x-x^2)/((1-3*x+x^2)*(1-x-x^2)),{x,0,1001}],x] (* Vincenzo Librandi, Mar 13 2012 *)
    LinearRecurrence[{4,-3,-2,1},{1,3,6,15},30] (* Harvey P. Dale, Aug 17 2024 *)
  • PARI
    a(n)=fibonacci(n)+fibonacci(2*n+1) \\ Charles R Greathouse IV, Mar 13 2012

Formula

G.f.: (1-2*x)*(1+x-x^2)/((1-3*x+x^2)*(1-x-x^2)). - Colin Barker, Mar 12 2012