cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087135 Number of positive numbers m such that A073642(m) = n.

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36, 44, 54, 64, 76, 92, 108, 128, 152, 178, 208, 244, 284, 330, 384, 444, 512, 592, 680, 780, 896, 1024, 1170, 1336, 1520, 1728, 1964, 2226, 2520, 2852, 3220, 3632, 4096, 4608, 5180, 5820, 6528, 7316, 8194, 9164, 10240, 11436, 12756, 14216, 15834
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 17 2003

Keywords

Comments

For n > 0, number of partitions of n into distinct nonnegative integers; for all n, number of nonempty partitions of n into distinct nonnegative integers. - Franklin T. Adams-Watters, Dec 28 2006
For n >= 1, a(n-1) is the number of partitions of n where all parts except possibly the two smallest are distinct, see example. - Joerg Arndt, May 23 2013

Examples

			n=6: numbers m such that A073642(m)=6: {14,15,20,21,34,35,64,65}, therefore a(6)=8.
From _Joerg Arndt_, May 23 2013: (Start)
There are a(10-1)=15 partitions of 10 where all parts except possibly the two smallest are distinct:
01:  [ 1 1 2 6 ]
02:  [ 1 1 3 5 ]
03:  [ 1 1 8 ]
04:  [ 1 2 3 4 ]
05:  [ 1 2 7 ]
06:  [ 1 3 6 ]
07:  [ 1 4 5 ]
08:  [ 1 9 ]
09:  [ 2 2 6 ]
10:  [ 2 3 5 ]
11:  [ 2 8 ]
12:  [ 3 3 4 ]
13:  [ 3 7 ]
14:  [ 4 6 ]
15:  [ 5 5 ]
16:  [ 10 ]
(End)
		

Crossrefs

Cf. A087136.

Programs

  • Maple
    ZL:=product(1+x^(j-1), j=1..59): gser:=series(ZL, x=0, 55): seq(coeff(gser, x, n), n=1..48); # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    (QPochhammer[-1, x] - 1 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    /* From the formula given by Joerg Arndt: */
    {a(n)=polcoeff(sum(m=0,n,x^(m*(m+1)/2)/prod(k=1,m+1,1-x^k +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", ")) /* Paul D. Hanna, Feb 19 2012 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m*prod(k=0,m-1,1+x^k +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", ")) /* Paul D. Hanna, Feb 19 2012 */

Formula

a(n) = 2*A000009(n) for n>0.
G.f.: Sum_{n>=0} (x^(n*(n+1)/2) / Product_{k=1..n+1} (1-x^k ) ). - Joerg Arndt, Mar 24 2011
G.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} (1+x^k). - Paul D. Hanna, Feb 19 2012

Extensions

Added "positive" to definition. - N. J. A. Sloane, Aug 25 2019