A087135 Number of positive numbers m such that A073642(m) = n.
1, 2, 2, 4, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36, 44, 54, 64, 76, 92, 108, 128, 152, 178, 208, 244, 284, 330, 384, 444, 512, 592, 680, 780, 896, 1024, 1170, 1336, 1520, 1728, 1964, 2226, 2520, 2852, 3220, 3632, 4096, 4608, 5180, 5820, 6528, 7316, 8194, 9164, 10240, 11436, 12756, 14216, 15834
Offset: 0
Keywords
Examples
n=6: numbers m such that A073642(m)=6: {14,15,20,21,34,35,64,65}, therefore a(6)=8. From _Joerg Arndt_, May 23 2013: (Start) There are a(10-1)=15 partitions of 10 where all parts except possibly the two smallest are distinct: 01: [ 1 1 2 6 ] 02: [ 1 1 3 5 ] 03: [ 1 1 8 ] 04: [ 1 2 3 4 ] 05: [ 1 2 7 ] 06: [ 1 3 6 ] 07: [ 1 4 5 ] 08: [ 1 9 ] 09: [ 2 2 6 ] 10: [ 2 3 5 ] 11: [ 2 8 ] 12: [ 3 3 4 ] 13: [ 3 7 ] 14: [ 4 6 ] 15: [ 5 5 ] 16: [ 10 ] (End)
Crossrefs
Cf. A087136.
Programs
-
Maple
ZL:=product(1+x^(j-1), j=1..59): gser:=series(ZL, x=0, 55): seq(coeff(gser, x, n), n=1..48); # Zerinvary Lajos, Mar 09 2007
-
Mathematica
(QPochhammer[-1, x] - 1 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
PARI
/* From the formula given by Joerg Arndt: */ {a(n)=polcoeff(sum(m=0,n,x^(m*(m+1)/2)/prod(k=1,m+1,1-x^k +x*O(x^n))),n)} for(n=0,60,print1(a(n),", ")) /* Paul D. Hanna, Feb 19 2012 */
-
PARI
{a(n)=polcoeff(sum(m=0,n,x^m*prod(k=0,m-1,1+x^k +x*O(x^n))),n)} for(n=0,60,print1(a(n),", ")) /* Paul D. Hanna, Feb 19 2012 */
Formula
a(n) = 2*A000009(n) for n>0.
G.f.: Sum_{n>=0} (x^(n*(n+1)/2) / Product_{k=1..n+1} (1-x^k ) ). - Joerg Arndt, Mar 24 2011
G.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} (1+x^k). - Paul D. Hanna, Feb 19 2012
Extensions
Added "positive" to definition. - N. J. A. Sloane, Aug 25 2019
Comments