A087156 Nonnegative numbers excluding 1.
0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[n mod n^2: n in [1..100]]; // Vincenzo Librandi, Aug 22 2015
-
Mathematica
A087156[n_] := Mod[n, DivisorSigma[1, n]] (* Enrique Pérez Herrero, Nov 11 2009 *) Drop[Range[0,80],{2}] (* Harvey P. Dale, Dec 13 2011 *)
-
PARI
a(n)=n-(n==1) \\ Charles R Greathouse IV, Aug 26 2011
-
Python
def A087156(n): return n if n>1 else 0 # Chai Wah Wu, Jul 31 2024
Formula
G.f.: x^2*(2-x)/(1-x)^2 . E.g.f.: x*(exp(x)-1). - Philippe Deléham, Nov 25 2008
a(n) = A163300(n)/2. - Juri-Stepan Gerasimov, Aug 14 2009
a(n) = n mod sigma_k(n), where sigma_k is the k divisor sigma function. -Enrique Pérez Herrero, Nov 11 2009
a(n+1) = floor((n+sqrt(n^2+8n))/2). - Philippe Deléham, Oct 03 2011
a(n) = n mod n^2. - Andrew Secunda, Aug 21 2015
Extensions
Comment and cross-reference added by Christopher Hunt Gribble, Oct 14 2009, Oct 17 2009
Comments