cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A087159 Satisfies a(1)=1, a(A087160(n+1)) = a(n)+1, with a(m)=2 for all m not found in A087160, where A087160(n+2)=A087160(n+1)+a(n)+1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 6, 2, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Paul D. Hanna, Aug 22 2003

Keywords

Comments

Records form A087161: a(A087161(n))=n and satisfy recurrence: A087161(n+3) = 5*A087161(n+2) - 6*A087161(n+1) + 2*A087161(n).

Examples

			Initialize all terms to 2. Set a(1)=1, go one term forward,
set a(2)=a(1)+1=2, go 2 terms forward,
set a(4)=a(2)+1=3, go 3 terms forward,
set a(7)=a(3)+1=3, go 3 terms forward,
set a(10)=a(4)+1=4, go 4 terms forward,
set a(14)=a(5)+1=3, etc.
The indices 1,2,4,7,10,14,... form A087160.
		

Crossrefs

A087160 Satisfies a(1)=1, a(2)=2, a(n+2)=a(n+1)+A087159(n)+1.

Original entry on oeis.org

1, 2, 4, 7, 10, 14, 17, 20, 24, 27, 30, 35, 38, 41, 44, 48, 51, 54, 58, 61, 64, 69, 72, 75, 78, 82, 85, 88, 92, 95, 98, 104, 107, 110, 113, 116, 120, 123, 126, 130, 133, 136, 140, 143, 146, 151, 154, 157, 160, 164, 167, 170, 174, 177, 180, 185, 188, 191, 194
Offset: 1

Views

Author

Paul D. Hanna, Aug 22 2003

Keywords

Crossrefs

A100631 Triangle read by rows: T(n,k) = 2*(T(n-1,k-1) - T(n-2,k-1) + T(n-1,k)) for 0 < k < n, T(n,0) = T(n,n) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 32, 32, 16, 1, 1, 32, 80, 104, 80, 32, 1, 1, 64, 192, 304, 304, 192, 64, 1, 1, 128, 448, 832, 1008, 832, 448, 128, 1, 1, 256, 1024, 2176, 3072, 3072, 2176, 1024, 256, 1, 1, 512, 2304, 5504, 8832, 10272, 8832, 5504, 2304, 512, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 03 2004

Keywords

Comments

From Petros Hadjicostas, Feb 09 2021: (Start)
The rectangular version (R(n,k): n,k >= 0) of this symmetric triangular array (T(n,k): 0 <= k <= n) is given by R(n,k) = T(n+k,k) for n,k >= 0. Conversely, T(n,k) = R(n-k, k) for 0 <= k <= n.
Note that [o.g.f of R](x,y) = [o.g.f. of T](x, y/x) and [o.g.f of T](x,y) = [o.g.f of R](x,x*y). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
All the conjectures below are true because one has to prove only one of them, and the rest follow from the proved one.
As Peter Luschny pointed out, one has to show only that the function S(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1) satisfies the recurrence S(n,k) = 2*(S(n,k-1) - S(n-1,k-1) + S(n-1,k)) for n, k > 0 and the initial conditions S(n,0) = S(0,n) = 1 for n >= 0.
This is quite easy to achieve because S(n,k) = 2^n*Sum_{s=0}^{k-1} binomial(k-1,s)*binomial(n+s-1,s) for n >= 0 and k >= 1. The proof of the recurrence relies on the identity binomial(m,n) = binomial(m-1, n) + binomial(m-1,n-1).
Note that without the 2^n in the formula R(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1), we essentially get array A049600.
In addition, note that without the 2^(n-k-1) in the formula T(n,k+1) = 2^(n-k-1)*hypergeom([-k, n-k+1], [1], -1), we essentially get A208341 (without the first column and the main diagonal of T). (End)

Examples

			From _Petros Hadjicostas_, Feb 09 2021: (Start)
Triangle T(n,k) (with rows n >= 0 and columns 0 <= k <= n) begins:
  1,
  1,   1,
  1,   2,    1,
  1,   4,    4,    1,
  1,   8,   12,    8,    1,
  1,  16,   32,   32,   16,    1,
  1,  32,   80,  104,   80,   32,    1,
  1,  64,  192,  304,  304,  192,   64,    1,
  1, 128,  448,  832, 1008,  832,  448,  128,   1,
  1, 256, 1024, 2176, 3072, 3072, 2176, 1024, 256, 1,
  ...
Rectangular array R(n,k) (with rows n >= 0 and columns k >= 0) begins:
  1,   1,    1,    1,     1,     1,      1,       1, ...
  1,   2,    4,    8,    16,    32,     64,     128, ...
  1,   4,   12,   32,    80,   192,    448,    1024, ...
  1,   8,   32,  104,   304,   832,   2176,    5504, ...
  1,  16,   80,  304,  1008,  3072,   8832,   24320, ...
  1,  32,  192,  832,  3072, 10272,  32064,   95104, ...
  1,  64,  448, 2176,  8832, 32064, 107712,  341504, ...
  1, 128, 1024, 5504, 24320, 95104, 341504, 1150592, ...
  ... (End)
		

Crossrefs

Programs

Formula

From Petros Hadjicostas, Feb 09 2021: (Start)
Formulas for the triangular array (T(n,k): 0 <= k <= n):
T(n,k) = T(n,n-k) for 0 <= k <= n.
Sum_{k=0..n} T(n,k) = A087161(n+1).
T(n,1) = T(n,n-1) = 2^(n-1) = A000079(n-1) for n >= 1.
T(n,2) = T(n,n-2) = (n-1)*2^(n-2) = A001787(n-1) for n >= 2.
T(n,3) = T(n,n-3) = (n^2-n-4)*2^(n-4) = A100312(n-3) for n >= 3.
T(n,floor(n/2)) = T(n,ceiling(n/2)) = A341344(n).
Bivariate o.g.f.: Sum_{n,k >= 0} T(n,k)*x^n*y^k = (3*x^2*y - 2*x*y - 2*x + 1)/((1 - x)*(-x*y + 1)*(2*x^2*y - 2*x*y - 2*x + 1)).
Conjecture based on Peter Luschny's formulas in other sequences: T(n,k) = 2^(n-k)*hypergeom([-k + 1, n-k], [1], -1) = 2^k*hypergeom([-(n-k) + 1, k], [1], -1).
Formulas for the rectangular array (R(n,k): n,k >= 0):
R(n,k) = 2*(R(n,k-1) - R(n-1,k-1) + R(n-1,k)) for n,k > 0 with R(n,0) = R(0,n) = 1 for n >= 0.
R(n,k) = R(k, n) for n,k >= 0.
R(1,n) = R(n,1) = 2^n = A000079(n).
R(2,n) = R(n,2) = (n+1)*2^n = A001787(n+1).
R(3,n) = R(n,3) = (n^2+5*n+2)*2^(n-1) = A100312(n).
R(n,n) = A152254(n-1) = 2*A084773(n-1) for n >= 1.
Bivariate o.g.f.: Sum_{n,k >= 0} R(n,k)*x^n*y^k = (3*x*y - 2*x - 2*y - 1)/((1 - x)*(1 - y)*(2*x*y - 2*x - 2*y - 1)).
Conjecture based on Peter Luschny's formulas in other sequences: R(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1) = 2^k*hypergeom([-n + 1, k], [1], -1). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
The above conjecture is true (see the comments).
R(n,k) = 2^k*Sum_{s=0}^{n-1} binomial(n-1,s)*binomial(k+s-1,s) = 2^n*Sum_{s=0}^{k-1} binomial(k-1,s)*binomial(n+s-1,s) for n, k >= 1.
To get two binomial formulas for T(n,k), use the equation T(n,k) = R(n-k, k) for 1 <= k <= n and the above formulas for R(n,k). (End)

Extensions

Offset changed by Petros Hadjicostas, Feb 09 2021
Showing 1-3 of 3 results.