A087278 Nonnegative integers whose distance to the nearest square is not greater than 1.
0, 1, 2, 3, 4, 5, 8, 9, 10, 15, 16, 17, 24, 25, 26, 35, 36, 37, 48, 49, 50, 63, 64, 65, 80, 81, 82, 99, 100, 101, 120, 121, 122, 143, 144, 145, 168, 169, 170, 195, 196, 197, 224, 225, 226, 255, 256, 257, 288, 289, 290, 323, 324, 325, 360, 361, 362, 399, 400, 401
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Programs
-
Mathematica
dnsQ[n_]:=Module[{x=Floor[Sqrt[n]]},Min[n-x^2,(x+1)^2-n]<=1]; Select[Range[0,450],dnsQ] (* Harvey P. Dale, May 25 2011 *) Table[n^2+{-1,0,1},{n,20}]//Flatten (* Harvey P. Dale, Jan 17 2022 *)
-
Python
def A087278(n): a, b = divmod(n,3) return a*(a+2)+b # Chai Wah Wu, Aug 03 2022
Formula
a(3*k) = (k+1)^2 - 1 = A005563(k+1);
a(3*k+1) = (k+1)^2 = A000290(k+1);
a(3*k+2) = (k+1)^2 + 1 = A002522(k+1).
a(n) = floor(n/3)*(floor(n/3) + 2) + n mod 3.
G.f.: -x*(1+x)*(x^4-2*x^3+x^2+1) / ( (1+x+x^2)^2*(x-1)^3 ). - R. J. Mathar, May 22 2019
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=1} 1/a(n) = coth(Pi)*Pi/2 + Pi^2/6 + 1/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = cosech(Pi)*Pi/2 + Pi^2/12 - 1/4. (End)