cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087278 Nonnegative integers whose distance to the nearest square is not greater than 1.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 10, 15, 16, 17, 24, 25, 26, 35, 36, 37, 48, 49, 50, 63, 64, 65, 80, 81, 82, 99, 100, 101, 120, 121, 122, 143, 144, 145, 168, 169, 170, 195, 196, 197, 224, 225, 226, 255, 256, 257, 288, 289, 290, 323, 324, 325, 360, 361, 362, 399, 400, 401
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 28 2003

Keywords

Crossrefs

Programs

  • Mathematica
    dnsQ[n_]:=Module[{x=Floor[Sqrt[n]]},Min[n-x^2,(x+1)^2-n]<=1]; Select[Range[0,450],dnsQ] (* Harvey P. Dale, May 25 2011 *)
    Table[n^2+{-1,0,1},{n,20}]//Flatten (* Harvey P. Dale, Jan 17 2022 *)
  • Python
    def A087278(n):
        a, b = divmod(n,3)
        return a*(a+2)+b # Chai Wah Wu, Aug 03 2022

Formula

a(3*k) = (k+1)^2 - 1 = A005563(k+1);
a(3*k+1) = (k+1)^2 = A000290(k+1);
a(3*k+2) = (k+1)^2 + 1 = A002522(k+1).
a(n) = floor(n/3)*(floor(n/3) + 2) + n mod 3.
G.f.: -x*(1+x)*(x^4-2*x^3+x^2+1) / ( (1+x+x^2)^2*(x-1)^3 ). - R. J. Mathar, May 22 2019
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=1} 1/a(n) = coth(Pi)*Pi/2 + Pi^2/6 + 1/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = cosech(Pi)*Pi/2 + Pi^2/12 - 1/4. (End)