A087316 a(n) = Sum_{k=1..n} prime(k)^prime(n-k+1).
4, 17, 84, 545, 7824, 281771, 51540600, 3347558057, 1146374959980, 288113965730819, 529172633067826888, 283453407513524913023, 4122282265785671687518812, 1586581830624893452605127040309, 412109111737176949907195758658736
Offset: 1
Keywords
Examples
Examples from _Jonathan Vos Post_, Jan 06 2006: (Start) a(1) = 4 because prime(1)^prime(1) = 2^2 = 4. a(2) = 17 because prime(1)^prime(2) + prime(2)^prime(1) = 2^3 + 3^2 = 17. a(3) = 84 because 2^5 + 3^3 + 5^2 = 84. a(4) = 545 = 2^7 + 3^5 + 5^3 + 7^2. a(5) = 7824 = 2^11 + 3^7 + 5^5 + 7^3 + 11^2. a(6) = 281771 = 2^13 + 3^11 + 5^7 + 7^5 + 11^3 + 13^2. a(7) = 51540600 = 2^17 + 3^13 + 5^11 + 7^7 + 11^5 + 13^3 + 17^2. a(8) = 3347558057 = 2^19 + 3^17 + 5^13 + 7^11 + 11^7 + 13^5 + 17^3 + 19^2. a(9) = 1146374959980 = 2^23 + 3^19 + 5^17 + 7^13 + 11^11 + 13^7 + 17^5 + 19^3 + 23^2. (End)
Links
- T. D. Noe, Table of n, a(n) for n=1..50
Programs
-
Maple
a:=n->sum(ithprime(k)^ithprime(n-k+1),k=1..n): seq(a(n),n=1..16); # Emeric Deutsch, Apr 13 2005
-
Mathematica
Table[Sum[Prime[k]^Prime[n - k + 1], {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jun 08 2025 *)
-
PARI
a(n) = sum(k=1, n, prime(k)^prime(n-k+1)); \\ Michel Marcus, Aug 20 2019
-
Python
from sympy import prime def a(n): return sum(prime(k)**prime(n-k+1) for k in range(1, n+1)) print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Apr 17 2021
Extensions
More terms from Sam Alexander, Oct 20 2003
Further terms from Emeric Deutsch, Apr 13 2005
Edited by N. J. A. Sloane, Aug 19 2008 at the suggestion of R. J. Mathar