A081744 Erroneous version of A087316.
2, 17, 84, 545, 7824, 281771, 51540600, 3347558057, 1146374959980
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 | a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000. a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12! = 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1 = 2^56 * 3^26 * 5^11 * 7^6 * 11^2. G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
[&*[Factorial(k): k in [0..n]]: n in [0..20]]; // Bruno Berselli, Mar 11 2015
A000178 := proc(n) mul(i!,i=1..n) ; end proc: seq(A000178(n),n=0..10) ; # R. J. Mathar, Oct 30 2015
a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* Stefan Steinerberger, Mar 10 2006 *) Table[BarnesG[n], {n, 2, 14}] (* Zerinvary Lajos, Jul 16 2009 *) FoldList[Times,1,Range[20]!] (* Harvey P. Dale, Mar 25 2011 *) RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *) BarnesG[Range[2, 20]] (* Eric W. Weisstein, Jul 14 2017 *)
A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* Martin Ettl, Oct 23 2012 */
A000178(n)=prod(k=2,n,k!) \\ M. F. Hasler, Sep 02 2007
a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ Hugo Pfoertner, Apr 09 2020
A000178_list, n, m = [1], 1,1 for i in range(1,100): m *= i n *= m A000178_list.append(n) # Chai Wah Wu, Aug 21 2015
from math import prod def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # Chai Wah Wu, Nov 26 2023
def mono_choices(a,b,n) n - [a,b].max end def comm_mono_choices(n) accum =1 0.upto(n-1) do |i| i.upto(n-1) do |j| accum = accum * mono_choices(i,j,n) end end accum end 1.upto(12) do |k| puts comm_mono_choices(k) end # Chad Brewbaker, Nov 03 2013
Since omega(n) = A001221(n) = 0, 1, 1, 1, 1, 2, 1, 1, 1, 2 and we skip the initial zero term, we have: a(1) = 1^1 = 1. a(2) = 1^1 + 1^1 = 2. a(3) = 1^1 + 1^1 + 1^1 = 3. a(4) = 1^1 + 1^1 + 1^1 + 1^1 = 4. a(5) = 1^1 + 1^1 + 1^1 + 1^1 + 2^1 = 6. a(9) = 1^1 + 1^1 + 1^1 + 1^1 + 2^2 + 1^1 + 1^1 + 1^1 + 2^1 = 13.
Table[Sum[PrimeNu[k]^(PrimeNu[n - k + 2]), {k, 2, n}], {n, 2, 50}] (* G. C. Greubel, May 18 2017 *)
for(n=2,25, print1(sum(k=2,n, omega(k)^(omega(n-k+2))), ", ")) \\ G. C. Greubel, May 18 2017
a(1) = 1 by definition. a(2) = 7 because 1^7 + 7^1 = 8 = 2^3 is a triprime (A014612).
p3[n_] := PrimeOmega[n] == 3; inve[w_] := Total[w^Reverse[w]]; a[1] = 1; a[n_] := a[n] = Block[{k = 0}, While[! p3[ inve@ Append[ Array[a, n - 1], ++k]]]; k]; Array[a, 75] (* Giovanni Resta, Jun 13 2016 *)
a(1) = 1^1 = 1. a(2) = 1^2 + 2^1 = 3. a(3) = 1^1 + 2^2 + 1^1 = 6. a(4) = 1^2 + 2^1 + 1^2 + 2^1 = 6. a(5) = 1^1 + 2^2 + 1^1 + 2^2 + 1^1 = 11. a(6) = 1^2 + 2^1 + 1^2 + 2^1 + 1^2 + 2^1 = 9.
Table[(-3 + 3*(-1)^n + 8*n - 2*(-1)^n*n)/4, {n,1,50}] (* G. C. Greubel, Mar 12 2017 *)
x='x +O('x^50); Vec(x*(1+3*x+4*x^2)/((1-x)^2*(1+x)^2)) \\ G. C. Greubel, Mar 12 2017
a(1) = A003842(1)^A003842(1) = 1^1 = 1. a(2) = A003842(1)^A003842(2) + A003842(2)^A003842(1) = 1^2 + 2^1 = 3. a(3) = 1^1 + 2^2 + 1^1 = 6. a(4) = 1^1 + 2^1 + 1^2 + 1^1 = 5. a(5) = 1^2 + 2^1 + 1^1 + 1^2 + 2^1 = 7. a(6) = 1^1 + 2^2 + 1^1 + 1^1 + 2^2 + 1^1 = 12. a(7) = 1^2 + 2^1 + 1^2 + 1^1 + 2^1 + 1^2 + 2^1 = 10. a(8) = 1^1 + 2^2 + 1^1 + 1^2 + 2^1 + 1^1 + 2^2 + 1^1 = 15. a(9) = 1^1 + 2^1 + 1^2 + 1^1 + 2^2 + 1^1 + 2^1 + 1^2 + 1^1 = 14. a(10) = 1^2 + 2^1 + 1^1 + 1^2 + 2^1 + 1^2 + 2^1 + 1^1 + 1^2 + 2^1 = 14.
A003842[n_] := n + 1 - Floor[((1 + Sqrt[5])/2)*Floor[2*(n + 1)/(1 + Sqrt[5])]]; Table[Sum[A003842[k]^(A003842[n - k + 1]), {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, May 18 2017 *)
a(1) = A100619(1)^A100619(1) = 1^1 = 1. a(2) = A100619(1)^A100619(2) + A100619(2)^A100619(1) = 1^2 + 2^1 = 3. a(3) = 1^3 + 2^2 + 3^1 = 8. a(4) = 1^1 + 2^3 + 3^2 + 1^1 = 19. a(5) = 1^1 + 2^1 + 3^3 + 1^2 + 1^1 = 32. a(6) = 1^1 + 2^1 + 3^1 + 1^3 + 1^2 + 1^1 = 9. a(7) = 1^2 + 2^1 + 3^1 + 1^1 + 1^3 + 1^2 + 2^1 = 11. a(8) = 1^1 + 2^2 + 3^1 + 1^1 + 1^1 + 1^3 + 2^2 + 1^1 = 16. a(9) = 1^1 + 2^1 + 3^2 + 1^1 + 1^1 + 1^1 + 2^3 + 1^2 + 2^1 = 26. a(10) = 1^1 + 2^2 + 3^1 + 1^2 + 1^1 + 1^1 + 2^1 + 1^3 + 2^2 + 1^1 = 19. a(11) = 1^2 + 2^1 + 3^2 + 1^1 + 1^2 + 1^1 + 2^1 + 1^1 + 2^3 + 1^2 + 2^1 = 29. a(12) = 1^3 + 2^2 + 3^1 + 1^2 + 1^1 + 1^2 + 2^1 + 1^1 + 2^1+ 1^3 + 2^2 + 3^1 = 24.
A100619:= Nest[Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {3, 1}, 3 -> {1}})]}], {1}, 8][[1]]; Table[Sum[(A100619[[k]])^(A100619[[n-k+1]]), {k, 1, n}], {n, 1, 100}] (* G. C. Greubel, May 18 2017 *)
a(1) = 1 by definition. a(2) = 3 because 3 is the min x such that 1^x + x^1 is semiprime, i.e., 1^3 + 3^1 = 4 = 2*2. a(3) = 5 because 1^5 + 3^3 + 5^1 = 33 = 3 * 11 is semiprime. a(4) = 2 because 1^2 + 3^5 + 5^3 + 2^1 = 371 = 7 * 53. a(5) = 4 because 1^4 + 3^2 + 5^5 + 2^3 + 4^1 = 3147 = 3 * 1049. a(6) = 2 because 1^2 + 3^4 + 5^2 + 2^5 + 4^3 + 2^1 = 205 = 5 * 41. a(7) = 2 because 1^2 + 3^2 + 5^4 + 2^2 + 4^5 + 2^3 + 2^1 = 1673 = 7 * 239. a(8) = 4 because 1^4 + 3^2 + 5^2 + 2^4 + 4^2 + 2^5 + 2^3 + 4^1 = 111 = 3 * 37.
semipQ[n_] := PrimeOmega[n] == 2; inve[w_] := Total[w^Reverse[w]]; a[1] = 1; a[n_] := a[n] = Block[{k = 0}, While[! semipQ[ inve@ Append[ Array[a, n - 1], ++k]]]; k]; Array[a, 81] (* Giovanni Resta, Jun 13 2016 *)
lista(n)={my(a=vector(n)); a[1]=1; print1(1, ", "); for(n=2, #a, my(t=sum(i=2, n-1, a[i]^a[n-i+1])); my(k=1); while(2!=bigomega(t+1+k), k++); a[n]=k; print1(k, ", "))} \\ Andrew Howroyd, Jan 03 2020
a(1) = A092782(1)^A092782(1) = 1^1 = 1. a(2) = A092782(1)^A092782(2) + A092782(2)^A092782(1) = 1^2 + 2^1 = 3. a(3) = 1^1 + 2^2 + 1^1 = 6. a(4) = 1^3 + 2^1 + 1^2 + 3^1 = 7. a(5) = 1^1 + 2^3 + 1^1 + 3^2 + 1^1 = 20. a(6) = 1^2 + 2^1 + 1^3 + 3^1 + 1^2 + 2^1 = 10. a(7) = 1^1 + 2^2 + 1^1 + 3^3 + 1^1 + 2^2 + 1^1 = 39. a(8) = 1^1 + 2^1 + 1^2 + 3^1 + 1^3 + 2^1 + 1^2 + 1^1 = 12. a(9) = 1^2 + 2^1 + 1^1 + 3^2 + 1^1 + 2^3 + 1^1 + 1^2 + 2^1 = 26. a(10) = 1^1 + 2^2 + 1^1 + 3^1 + 1^2 + 2^1 + 1^3 + 1^1 + 2^2 + 1^1 = 19. a(11) = 1^3 + 2^1 + 1^2 + 3^1 + 1^1 + 2^2 + 1^1 + 1^3 + 2^1 + 1^2 + 3^1 = 20. a(12) = 1^1 + 2^3 + 1^1 + 3^2 + 1^1 + 2^1 + 1^2 + 1^1 + 2^3 + 1^1 + 3^2 + 1^1 = 43.
A092782[n_] := Nest[Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1}})]}], {1}, n][[1]]; Table[Sum[(A092782[k][[k]])^((A092782[n - k + 1][[n - k + 1]])), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)
Comments