A087401 Triangle of n*r-binomial(r+1,2).
0, 0, 0, 0, 1, 1, 0, 2, 3, 3, 0, 3, 5, 6, 6, 0, 4, 7, 9, 10, 10, 0, 5, 9, 12, 14, 15, 15, 0, 6, 11, 15, 18, 20, 21, 21, 0, 7, 13, 18, 22, 25, 27, 28, 28, 0, 8, 15, 21, 26, 30, 33, 35, 36, 36, 0, 9, 17, 24, 30, 35, 39, 42, 44, 45, 45, 0, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55, 55, 0, 11
Offset: 0
Examples
0 0 0 0 1 1 0 2 3 3 0 3 5 6 6 0 4 7 9 10 10 0 5 9 12 14 15 15 0 6 11 15 18 20 21 21 0 7 13 18 22 25 27 28 28 0 8 15 21 26 30 33 35 36 36 0 9 17 24 30 35 39 42 44 45 45
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Crossrefs
Cf. A138666.
Programs
-
Haskell
a087401 n k = a087401_tabl !! n !! k a087401_row n = a087401_tabl !! n a087401_tabl = iterate f [0] where f row = row' ++ [last row'] where row' = zipWith (+) row [0..] -- Reinhard Zumkeller, Oct 03 2012
-
Maple
A087401 := proc(n,k) n*k-binomial(k+1,2) ; end proc: seq(seq( A087401(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jan 21 2015
-
Mathematica
Table[n*r-Binomial[r+1,2],{n,0,20},{r,0,n}]//Flatten (* Harvey P. Dale, Jul 10 2020 *)
Formula
T(0,0)=0 and for n>0: T(n,k)=T(n-1,k)+k for kReinhard Zumkeller, Oct 03 2012
Comments