A087421 Smallest prime >= n!.
2, 2, 2, 7, 29, 127, 727, 5051, 40343, 362897, 3628811, 39916801, 479001629, 6227020867, 87178291219, 1307674368043, 20922789888023, 355687428096031, 6402373705728037, 121645100408832089, 2432902008176640029, 51090942171709440031, 1124000727777607680031
Offset: 0
Keywords
Examples
a(0) = 2 since 0! = 1 and 2 is the smallest prime >= 1. a(4) = 29 since 4! = 24 and 29 is the smallest prime >= 24.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..400
- Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
Programs
-
Mathematica
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; Table[ NextPrim[n! - 1], {n, 0, 20}] (* Robert G. Wilson v, Oct 25 2003 *) Join[{2,2,2},NextPrime[Range[3,25]!]] (* Harvey P. Dale, Feb 23 2011 *)
-
PARI
a(n)=nextprime(n!); \\ R. J. Cano, Apr 08 2018
-
Python
from sympy import factorial, nextprime def a(n): return nextprime(factorial(n)-1) print([a(n) for n in range(23)]) # Michael S. Branicky, May 22 2022
Formula
a(n) = min { p[i] | p[i]>=n! }, where p[i] is the set of prime numbers.
Extensions
Edited, corrected and extended by Robert G. Wilson v and Ray Chandler, Oct 25 2003
Comments