A087444 Numbers that are congruent to {1, 4} mod 9.
1, 4, 10, 13, 19, 22, 28, 31, 37, 40, 46, 49, 55, 58, 64, 67, 73, 76, 82, 85, 91, 94, 100, 103, 109, 112, 118, 121, 127, 130, 136, 139, 145, 148, 154, 157, 163, 166, 172, 175, 181, 184, 190, 193, 199, 202, 208, 211, 217, 220, 226, 229, 235, 238, 244, 247, 253
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..10000
- Kival Ngaokrajang, Illustration of initial terms (3.3.3.3.6), (3.6.3.6)
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Select[Range[300],MemberQ[{1,4},Mod[#,9]]&] (* or *) LinearRecurrence[ {1,1,-1},{1,4,10},60] (* Harvey P. Dale, Jan 22 2019 *)
-
PARI
a(n) = (18*n - 17 - 3*(-1)^n)/4 \\ David Lovler, Aug 20 2022
Formula
G.f.: x*(1+3*x+5*x^2)/((1+x)*(1-x)^2).
E.g.f.: 5 + ((9*x - 17/2)*exp(x) - (3/2)*exp(-x))/2.
a(n) = (18*n - 17 - 3*(-1)^n)/4.
a(n) = 9*n - a(n-1) - 13 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
Extensions
Kival Ngaokrajang's comment reworded by Wolfdieter Lang, Dec 05 2014
E.g.f. and formula adapted to offset by David Lovler, Aug 20 2022
Comments