cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080464 Product of the two numbers formed by alternate digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 0
Offset: 10

Views

Author

Amarnath Murthy, Mar 02 2003

Keywords

Examples

			a(132546) = 124 * 356 = 44144.
		

Crossrefs

Programs

  • Mathematica
    nad[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Take[idn,{1,-1,2}]] FromDigits[ Take[idn,{2,-1,2}]]]; Array[nad,120,10] (* Harvey P. Dale, Aug 07 2019 *)
  • PARI
    A080464(n,d=digits(n))={n=d*matrix(#d,2,z,s,if((z-s)%2,10^((#d-z)\2)));n[1]*n[2]}

Formula

a(n) < n for all n. - M. F. Hasler, Jan 10 2016

Extensions

More terms from Ray Chandler, Oct 11 2003

A087472 Number of iterations required for the function f(n) to reach a single digit, where f(n) is the product of the two numbers formed from the alternating digits of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, 2, 2, 3, 2, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 1, 1, 2, 2, 3, 3, 2, 4, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amarnath Murthy and Paul D. Hanna, Sep 11 2003

Keywords

Comments

A087471(n) gives the final digit reached by successive iterations of Murthy's function, f(n). A087473(n) gives the smallest number that requires n iterations of Murthy's function to reach a single digit. The n-th row of triangle A087474 gives the n successive iterations of Murthy's function on A087473(n).
Differs from A031346 first at n=110. [From R. J. Mathar, Sep 11 2008]

Examples

			a(1234)= 3 since f(1234)=13*24=312, f(312)=32*1=32 and
f(32)=3*2=6.
		

Crossrefs

Programs

  • Maple
    murthy:= proc(n) local L,d;
      L:= convert(n,base,10);
      d:= nops(L);
      add(L[2*i+1]*10^i,i=0..(d-1)/2)*add(L[2*i+2]*10^i,i=0..(d-2)/2)
    end proc:
    A087472:= proc(n) option remember;
      if n < 10 then  0 else 1+procname(murthy(n)) fi
    end proc:
    map(A087472, [$1..200]); # Robert Israel, Feb 14 2017

A087471 Final digit resulting from iterations of the product of the two numbers formed from the alternating digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 3, 6, 9, 2, 5, 8, 2, 8, 4, 0, 4, 8, 2, 6, 0, 8, 6, 6, 8, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0, 0, 6, 2, 8, 8, 0, 8, 8, 6, 0, 0, 7, 4, 2, 6, 5, 8, 8, 0, 8, 0, 8, 6, 8, 6, 0, 6, 0, 8, 4, 0, 9, 8, 4, 8, 0, 0, 8, 4, 8, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy and Paul D. Hanna, Sep 11 2003

Keywords

Comments

A087472(n) gives the number of iterations required for Murthy's function, f(n), to reach a single digit. A087473(n) gives the smallest number that requires n iterations of Murthy's function to reach a single digit. The n-th row of triangle A087474 gives the n successive iterations of Murthy's function on A087473(n).
Apart from the undefined a(0), the sequence differs from A031347 first at n=121. [From R. J. Mathar, Sep 11 2008]

Examples

			a(1234) = a(13*24) = a(312) = a(32*1) = a(32) = a(3*2) = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[NestWhile[With[{idn=IntegerDigits[#]},FromDigits[Take[idn,{1,-1,2}]] FromDigits[Take[idn,{2,-1,2}]]]&,n,#>9&],{n,110}] (* Harvey P. Dale, Dec 05 2014 *)

Formula

a(n) = a(f(n)), where f(n) is Murthy's function: f(1234)=13*24=312, f(12345)=135*24=3240, f(123456)=135*246=33210.

A087473 Smallest positive number that requires n iterations of f(k) to reach a single digit, where f(k) is the product of the two numbers formed from the alternating digits of k.

Original entry on oeis.org

1, 10, 25, 39, 77, 171, 199, 577, 887, 1592, 2682, 3988, 6913, 18747, 39577, 58439, 99428, 173442, 267343, 299137, 574182, 685812, 880543, 1635812, 1974447, 2771717, 18871813, 45797337, 49899368, 58935768, 158504329, 265956179, 566800111, 896125563
Offset: 0

Views

Author

Amarnath Murthy and Paul D. Hanna, Sep 11 2003

Keywords

Examples

			a(4)= 77 since 77 is the smallest number that requires 4 iterations to reach a single digit: f(77)=7*7=49, f(49)=4*9=36, f(36)=3*6=18, f(18)=1*8=8.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = IntegerDigits@ n}, If[OddQ@ Length@ d, PrependTo[d, 0]]; Times @@ FromDigits /@ Transpose@ Partition[d, 2]]; a[n_] := Block[ {c=-1, m}, t=0; While[c != n, t++; m=t; c=0; While[m > 9, c++; m = f@ m]]; t]; a /@ Range[0, 12] (* Giovanni Resta, Aug 01 2018 *)

Extensions

More terms from Ray Chandler, Sep 19 2003
a(30)-a(33) from Giovanni Resta, Aug 01 2018
Showing 1-4 of 4 results.