cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087481 Number of polynomials of the form x^n +- x^(n-1) +- x^(n-2) +- ... +- 1 irreducible over the integers.

Original entry on oeis.org

2, 4, 4, 16, 12, 48, 64, 192, 260, 1024, 1128, 4096, 4480, 13310, 20620, 65434, 76376, 262144, 358532, 932134, 1391720, 4194090, 5447256, 16570740, 23153832, 61696126, 97361128
Offset: 1

Views

Author

T. D. Noe, Sep 09 2003

Keywords

Comments

For each n, there are 2^n polynomials to consider. All 2^n polynomials are irreducible for n = 1, 2, 4, 10, 12, 18, which is sequence A071642. For those values of n, n+1 is a prime in Artin's primitive root conjecture (A001122).
Since p(x) is irreducible iff (-1)^n*p(-x) is irreducible, all terms are even. - Robert Israel, Dec 22 2014

Crossrefs

Cf. A001122, A071642, A087482 (irreducible binary polynomials).

Programs

  • Maple
    f:= proc(n) local t, j, p0, p;
       p0:= add(x^j, j = 0 .. n);
       2*nops(select(s -> irreduc(p0 - 2*add(x^(j-1), j = s)), combinat:-powerset(n-1)));
    end proc:
    seq(f(n),n=1..18); # Robert Israel, Dec 22 2014
  • Mathematica
    Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(2*IntegerDigits[i, 2, n]-1); If[Irreducible[p, 0], cnt++ ], {i, 0, 2^n-1}]; cnt, {n, 18}]
  • SageMath
    R.=Z[]; a(n) = sum((x^n + sum(( 2 * ((b & (1<> d) - 1 ) * x^d for d in range(n))).is_irreducible() for b in range(2^n))

Formula

a(n) = 2^n for n a term of A071642; see first comment.

Extensions

a(19) from Robert Israel, Dec 22 2014
a(20)-a(27) from Lucas A. Brown, May 19 2023