A087481 Number of polynomials of the form x^n +- x^(n-1) +- x^(n-2) +- ... +- 1 irreducible over the integers.
2, 4, 4, 16, 12, 48, 64, 192, 260, 1024, 1128, 4096, 4480, 13310, 20620, 65434, 76376, 262144, 358532, 932134, 1391720, 4194090, 5447256, 16570740, 23153832, 61696126, 97361128
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Math Overflow, Irreducible polynomials with constrained coefficients
Programs
-
Maple
f:= proc(n) local t, j, p0, p; p0:= add(x^j, j = 0 .. n); 2*nops(select(s -> irreduc(p0 - 2*add(x^(j-1), j = s)), combinat:-powerset(n-1))); end proc: seq(f(n),n=1..18); # Robert Israel, Dec 22 2014
-
Mathematica
Irreducible[p_, n_] := Module[{f}, f=FactorList[p, Modulus->n]; Length[f]==1 || Simplify[p-f[[2, 1]]]===0]; Table[xx=x^Range[0, n-1]; cnt=0; Do[p=x^n+xx.(2*IntegerDigits[i, 2, n]-1); If[Irreducible[p, 0], cnt++ ], {i, 0, 2^n-1}]; cnt, {n, 18}]
-
SageMath
R.
=Z[]; a(n) = sum((x^n + sum(( 2 * ((b & (1< > d) - 1 ) * x^d for d in range(n))).is_irreducible() for b in range(2^n))
Formula
a(n) = 2^n for n a term of A071642; see first comment.
Extensions
a(19) from Robert Israel, Dec 22 2014
a(20)-a(27) from Lucas A. Brown, May 19 2023
Comments