cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087503 a(n) = 3(a(n-2) + 1), with a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 6, 12, 21, 39, 66, 120, 201, 363, 606, 1092, 1821, 3279, 5466, 9840, 16401, 29523, 49206, 88572, 147621, 265719, 442866, 797160, 1328601, 2391483, 3985806, 7174452, 11957421, 21523359, 35872266, 64570080, 107616801, 193710243
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 11 2003

Keywords

Crossrefs

Sequences with similar recurrence rules: A027383 (p=2), A133628 (p=4), A133629 (p=5).
Other related sequences for different p: A016116 (p=2), A038754 (p=3), A084221 (p=4), A133632 (p=5).
See A133629 for general formulas with respect to the recurrence rule parameter p.
Related sequences: A132666, A132667, A132668, A132669.

Programs

  • Magma
    [(3/2)*(3^Floor((n+1)/2)+3^Floor(n/2)-3^Floor((n-1)/2)-1): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
  • Maple
    A087503 := proc(n)
        option remember;
        if n <=1 then
            op(n+1,[1,3]) ;
        else
            3*procname(n-2)+3 ;
        end if;
    end proc:
    seq(A087503(n),n=0..20) ; # R. J. Mathar, Sep 10 2021
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==3,a[n]==3(a[n-2]+1)},a,{n,40}] (* or *) LinearRecurrence[{1,3,-3},{1,3,6},40] (* Harvey P. Dale, Jan 01 2015 *)

Formula

a(n) = a(n-1) + A038754(n). (i.e., partial sums of A038754).
From Hieronymus Fischer, Sep 19 2007, formulas adjusted to offset, Dec 29 2012: (Start)
G.f.: g(x) = (1+2x)/((1-3x^2)(1-x)).
a(n) = (3/2)*(3^((n+1)/2)-1) if n is odd, else a(n) = (3/2)*(5*3^((n-2)/2)-1).
a(n) = (3/2)*(3^floor((n+1)/2) + 3^floor(n/2) - 3^floor((n-1)/2)-1).
a(n) = 3^floor((n+1)/2) + 3^floor((n+2)/2)/2 - 3/2.
a(n) = A132667(a(n+1)) - 1.
a(n) = A132667(a(n-1) + 1) for n > 0.
A132667(a(n)) = a(n-1) + 1 for n > 0.
Also numbers such that: a(0)=1, a(n) = a(n-1) + (p-1)*p^((n+1)/2 - 1) if n is odd, else a(n) = a(n-1) + p^(n/2), where p=3.
(End)
a(n) = A052993(n)+2*A052993(n-1). - R. J. Mathar, Sep 10 2021

Extensions

Additional comments from Hieronymus Fischer, Sep 19 2007
Edited by N. J. A. Sloane, May 04 2010. I merged two essentially identical entries with different offsets, so some of the formulas may need to be adjusted.
Formulas and MAGMA prog adjusted to offset 0 by Hieronymus Fischer, Dec 29 2012