cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087626 Expansion of 2/(1-2x+sqrt(1-4x+4x^3)).

Original entry on oeis.org

1, 2, 5, 13, 36, 104, 311, 955, 2995, 9553, 30896, 101082, 333946, 1112496, 3732955, 12605029, 42800317, 146046819, 500555447, 1722402303, 5948047169, 20607691517, 71610355540, 249520257106, 871614139396, 3051737703526
Offset: 0

Views

Author

Michael Somos, Sep 16 2003

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 36*x^4 + 104*x^5 + 311*x^6 + 955*x^7 + ... - _Michael Somos_, Mar 28 2020
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(6+4*n)*a(n)+(-6-4*n)*a(n+1)+(-18-4*n)*a(2+n)+(24+5*n)*a(n+3)+(-6-n)*a(n+4), a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 13},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Oct 26 2018
  • Mathematica
    CoefficientList[Series[2/(1-2x+Sqrt[1-4x+4x^3]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2017 *)
  • PARI
    {a(n) = polcoeff(2 / (1 - 2*x + sqrt(1 - 4*x + 4*x^3 + x*O(x^n))), n)};

Formula

G.f.: 2/(1-2x+sqrt(1-4x+4x^3)).
G.f. A(x) satisfies 0 = x^2*(1-x)*A(x)^2 - (1-2*x)*A(x) + 1.
First backwards difference is A056010.
(6+4*n)*a(n)+(-6-4*n)*a(n+1)+(-18-4*n)*a(2+n)+(24+5*n)*a(n+3)+(-6-n)*a(n+4)=0. - Robert Israel, Oct 26 2018
HANKEL transform is A006720(n+2). HANKEL transform with 0 prepended is -A051138.
INVERT transform of A157003. - Michael Somos, Mar 28 2020