cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087652 Product of the nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 6, 1, 32, 9, 10, 1, 288, 1, 14, 15, 512, 1, 972, 1, 800, 21, 22, 1, 55296, 25, 26, 243, 1568, 1, 27000, 1, 16384, 33, 34, 35, 1679616, 1, 38, 39, 256000, 1, 74088, 1, 3872, 6075, 46, 1, 42467328, 49, 12500, 51, 5408, 1, 1417176, 55, 702464, 57, 58
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 25 2003

Keywords

Examples

			For n = 12: nonprime divisors = {4,6,12}: a(12) = 4*6*12 = 288.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n^(DivisorSigma[0, n]/2) / Times @@ FactorInteger[n][[;;, 1]]; Array[a, 100] (* Amiram Eldar, Feb 01 2025 *)
  • PARI
    a(n) = my(p=1); fordiv(n, d, if (!isprime(d), p*=d)); p; \\ Michel Marcus, Aug 05 2017

Formula

a(n) = 1 if n = 1 or n is prime.
a(n) = n if n = 1 or n is semiprime (A001358).
From Wesley Ivan Hurt, Jun 08 2020: (Start)
a(n) = Product_{d|n, d nonprime} d.
If n is squarefree, then a(n) = n^(d(n)/2-1), where d(n) is the number of divisors of n (A000005). (End)
a(p^e) = p^((e^2+e-2)/2) for p prime, e > 0. - Bernard Schott, Jun 08 2020
a(n) = A007955(n)/A007947(n). - Amiram Eldar, Feb 01 2025