cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087654 Decimal expansion of D(1) where D(x) is the Dawson function.

Original entry on oeis.org

5, 3, 8, 0, 7, 9, 5, 0, 6, 9, 1, 2, 7, 6, 8, 4, 1, 9, 1, 3, 6, 3, 8, 7, 4, 2, 0, 4, 0, 7, 5, 5, 6, 7, 5, 4, 7, 9, 1, 9, 7, 5, 0, 0, 1, 7, 5, 3, 9, 3, 3, 3, 1, 8, 8, 7, 5, 2, 1, 9, 0, 9, 8, 0, 0, 2, 5, 6, 6, 5, 0, 3, 3, 3, 0, 5, 2, 7, 1, 0, 6, 2, 9, 7, 2, 6, 0, 8, 6, 1, 5, 0, 2, 7, 4, 3, 0, 8, 0, 9, 3, 8, 8, 9
Offset: 0

Views

Author

Benoit Cloitre, Sep 25 2003

Keywords

Examples

			0.5380795069127684191363874204075567547919750017539...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 42, page 407.

Programs

  • Mathematica
    RealDigits[ N[ Sqrt[Pi]*Erfi[1]/(2*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    RealDigits[DawsonF[1], 10, 120][[1]] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    intnum(t=0, 1, exp(t^2))/exp(1) \\ Michel Marcus, Feb 28 2023

Formula

D(1) = (1/e)*Integral_{t=0..1} exp(t^2) dt.
Equals Integral_{x=0..oo} e^(-x^2) sin(2x) dx = 1F1(1;3/2;-1). - R. J. Mathar, Jul 10 2024
Equals A099288 * sqrt(Pi)/(2e) = A099288 *A019704 * A068985. - R. J. Mathar, Jul 10 2024