A087654 Decimal expansion of D(1) where D(x) is the Dawson function.
5, 3, 8, 0, 7, 9, 5, 0, 6, 9, 1, 2, 7, 6, 8, 4, 1, 9, 1, 3, 6, 3, 8, 7, 4, 2, 0, 4, 0, 7, 5, 5, 6, 7, 5, 4, 7, 9, 1, 9, 7, 5, 0, 0, 1, 7, 5, 3, 9, 3, 3, 3, 1, 8, 8, 7, 5, 2, 1, 9, 0, 9, 8, 0, 0, 2, 5, 6, 6, 5, 0, 3, 3, 3, 0, 5, 2, 7, 1, 0, 6, 2, 9, 7, 2, 6, 0, 8, 6, 1, 5, 0, 2, 7, 4, 3, 0, 8, 0, 9, 3, 8, 8, 9
Offset: 0
Examples
0.5380795069127684191363874204075567547919750017539...
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 42, page 407.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Dawson's Integral.
Programs
-
Mathematica
RealDigits[ N[ Sqrt[Pi]*Erfi[1]/(2*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *) RealDigits[DawsonF[1], 10, 120][[1]] (* Amiram Eldar, Jun 25 2023 *)
-
PARI
intnum(t=0, 1, exp(t^2))/exp(1) \\ Michel Marcus, Feb 28 2023
Formula
D(1) = (1/e)*Integral_{t=0..1} exp(t^2) dt.
Equals Integral_{x=0..oo} e^(-x^2) sin(2x) dx = 1F1(1;3/2;-1). - R. J. Mathar, Jul 10 2024