A087687 Number of solutions to x^2 + y^2 + z^2 == 0 (mod n).
1, 4, 9, 8, 25, 36, 49, 32, 99, 100, 121, 72, 169, 196, 225, 64, 289, 396, 361, 200, 441, 484, 529, 288, 725, 676, 891, 392, 841, 900, 961, 256, 1089, 1156, 1225, 792, 1369, 1444, 1521, 800, 1681, 1764, 1849, 968, 2475, 2116, 2209, 576, 2695, 2900, 2601
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 80 terms from Robert Gerbicz)
- C. Calderón and M. J. De Velasco, On divisors of a quadratic form, Boletim da Sociedade Brasileira de Matemática, Vol. 31, No. 1 (2000), pp. 81-91; alternative link.
- László Toth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq., Vol. 17 (2014), Article # 14.11.6; arXiv preprint, arXiv:1404.4214 [math.NT], 2014.
- Index to sequences related to sums of squares
Programs
-
Maple
A087687 := proc(n) a := 1; for pe in ifactors(n)[2] do p := op(1,pe) ; e := op(2,pe) ; if p = 2 then a := a*p^(e+ceil(e/2)) ; elif type(e,'odd') then a := a*p^((3*e-1)/2)*(p^((e+1)/2)+p^((e-1)/2)-1) ; else a := a*p^(3*e/2-1)*(p^(e/2+1)+p^(e/2)-1) ; end if; end do: a ; end proc: seq(A087687(n),n=1..100) ; # R. J. Mathar, Jun 25 2018
-
Mathematica
a[n_] := Module[{k=1}, Do[{p, e} = pe; k = k*If[p == 2, p^(e + Ceiling[ e/2]), If[OddQ[e], p^((3*e-1)/2)*(p^((e+1)/2) + p^((e-1)/2) - 1), p^(3*e/2 - 1)*(p^(e/2 + 1) + p^(e/2) - 1)]], {pe, FactorInteger[n]}]; k]; Array[a, 100] (* Jean-François Alcover, Jul 10 2018, after R. J. Mathar *)
-
PARI
a(n)=local(v=vector(n),w);for(i=1,n,v[i^2%n+1]++);w=vector(n,i,sum(j=1,n,v[j]*v[(i-j)%n+1]));sum(j=1,n,w[j]*v[(1-j)%n+1]) \\ Martin Fuller
-
PARI
a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 2^(e+(e+1)\2), p^(e+(e-1)\2)*(p^(e\2)*(p+1) - 1)))} \\ Andrew Howroyd, Aug 06 2018
Formula
a(2^k) = 2^(k + ceiling(k/2)). For odd primes p, a(p^(2k-1)) = p^(3k-2)*(p^k + p^(k-1) - 1) and a(p^(2k)) = p^(3k-1)*(p^(k+1) + p^k - 1). - Martin Fuller, Jan 26 2009
Sum_{k=1..n} a(k) ~ (4*zeta(3))/(15*zeta(4)) * n^3 + O(n^2 * log(n)) (Calderón and de Velasco, 2000). - Amiram Eldar, Mar 04 2021
Extensions
More terms from Robert Gerbicz, Aug 22 2006
Edited by Steven Finch, Feb 06 2009, Feb 12 2009
Comments