cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087712 a(1) = 1; if n = k-th prime, a(n) = k; otherwise write all prime factors of n in nondecreasing order, replace each prime with its rank, and concatenate the ranks.

Original entry on oeis.org

1, 1, 2, 11, 3, 12, 4, 111, 22, 13, 5, 112, 6, 14, 23, 1111, 7, 122, 8, 113, 24, 15, 9, 1112, 33, 16, 222, 114, 10, 123, 11, 11111, 25, 17, 34, 1122, 12, 18, 26, 1113, 13, 124, 14, 115, 223, 19, 15, 11112, 44, 133, 27, 116, 16, 1222, 35, 1114, 28, 110, 17, 1123, 18
Offset: 1

Views

Author

Eric Angelini, Feb 02 2009

Keywords

Comments

Concatenations of consecutive entries of A112798. - R. J. Mathar, Feb 09 2009
The old entry with this A-number was a duplicate of A082467.

Examples

			n = 2 = first prime, a(2) = 1.
n = 3 = second prime, a(3) = 2.
n = 4 = 2*2 -> 1,1 -> 11, so a(4) = 11.
n = 6 = 2*3 -> 1,2 -> 12, so a(6) = 12.
n = 12 = 2*2*3 -> 1,1,2 -> 112, so a(12) = 112.
		

Crossrefs

See A098282 for lengths of trajectories. Cf. A077960, A156055.

Programs

  • Haskell
    a087712 1 = 1
    a087712 n = read $ concatMap (show . a049084) $ a027746_row n :: Integer
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    # Maple program from R. J. Mathar, Feb 08 2009: (Start)
    cat2 := proc(a,b) a*10^(max(1,ilog10(b)+1))+b ; end:
    A049084 := proc(p) if isprime(p) then numtheory[pi](p) ; else 0 ; fi; end:
    A087712 := proc(n) local pf,a,p,ex ; if isprime(n) then A049084(n) ; elif n = 1 then 1 ; else pf := ifactors(n)[2] ; a := 0 ; for p in pf do for ex from 1 to op(2,p) do a := cat2(a, A049084(op(1,p)) ) ; od: od: fi; end:
    seq(A087712(n),n=1..140); # (End)
    # (Maple program from David Applegate and N. J. A. Sloane, Feb 09 2009)
    with(numtheory):
    f := proc(n) local t1, v, r, x, j;
    if (n = 1) then return 1; end if;
    t1 := ifactors(n): v := 0;
    for x in op(2,t1) do r := pi(x[1]):
    for j from 1 to x[2] do
    v := v * 10^length(r) + r;
    end do; end do; v; end proc;
  • Mathematica
    f[n_] := If[n == 1, 1, FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@# & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@ n])]]; Array[f, 61] (* Robert G. Wilson v, Jun 06 2011 *)
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n == 1: return 1
        return int("".join(str(primepi(p))*e for p, e in factorint(n).items()))
    print([a(n) for n in range(1, 62)]) # Michael S. Branicky, Oct 01 2024

Extensions

More terms from R. J. Mathar (Feb 08 2009) and independently from David Applegate and N. J. A. Sloane, Feb 09 2009