A087712 a(1) = 1; if n = k-th prime, a(n) = k; otherwise write all prime factors of n in nondecreasing order, replace each prime with its rank, and concatenate the ranks.
1, 1, 2, 11, 3, 12, 4, 111, 22, 13, 5, 112, 6, 14, 23, 1111, 7, 122, 8, 113, 24, 15, 9, 1112, 33, 16, 222, 114, 10, 123, 11, 11111, 25, 17, 34, 1122, 12, 18, 26, 1113, 13, 124, 14, 115, 223, 19, 15, 11112, 44, 133, 27, 116, 16, 1222, 35, 1114, 28, 110, 17, 1123, 18
Offset: 1
Examples
n = 2 = first prime, a(2) = 1. n = 3 = second prime, a(3) = 2. n = 4 = 2*2 -> 1,1 -> 11, so a(4) = 11. n = 6 = 2*3 -> 1,2 -> 12, so a(6) = 12. n = 12 = 2*2*3 -> 1,1,2 -> 112, so a(12) = 112.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a087712 1 = 1 a087712 n = read $ concatMap (show . a049084) $ a027746_row n :: Integer -- Reinhard Zumkeller, Oct 03 2012
-
Maple
# Maple program from R. J. Mathar, Feb 08 2009: (Start) cat2 := proc(a,b) a*10^(max(1,ilog10(b)+1))+b ; end: A049084 := proc(p) if isprime(p) then numtheory[pi](p) ; else 0 ; fi; end: A087712 := proc(n) local pf,a,p,ex ; if isprime(n) then A049084(n) ; elif n = 1 then 1 ; else pf := ifactors(n)[2] ; a := 0 ; for p in pf do for ex from 1 to op(2,p) do a := cat2(a, A049084(op(1,p)) ) ; od: od: fi; end: seq(A087712(n),n=1..140); # (End) # (Maple program from David Applegate and N. J. A. Sloane, Feb 09 2009) with(numtheory): f := proc(n) local t1, v, r, x, j; if (n = 1) then return 1; end if; t1 := ifactors(n): v := 0; for x in op(2,t1) do r := pi(x[1]): for j from 1 to x[2] do v := v * 10^length(r) + r; end do; end do; v; end proc;
-
Mathematica
f[n_] := If[n == 1, 1, FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@# & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@ n])]]; Array[f, 61] (* Robert G. Wilson v, Jun 06 2011 *)
-
Python
from sympy import factorint, primepi def a(n): if n == 1: return 1 return int("".join(str(primepi(p))*e for p, e in factorint(n).items())) print([a(n) for n in range(1, 62)]) # Michael S. Branicky, Oct 01 2024
Extensions
More terms from R. J. Mathar (Feb 08 2009) and independently from David Applegate and N. J. A. Sloane, Feb 09 2009
Comments