cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A098282 Iterate the map k -> A087712(k) starting at n; a(n) is the number of steps at which we see a repeated term for the first time; or -1 if the trajectory never repeats.

Original entry on oeis.org

1, 2, 3, 6, 4, 31, 7, 55, 4, 33, 5, 30, 32, 1, 4, 19, 8, 112, 56, 16, 27, 4, 4, 26, 2, 20, 223, 102, 34, 14, 6, 162, 2, 9, 10, 75, 31, 113, 21, 100, 33, 20, 2, 23, 30, 57, 5, 28, 24, 30, 224, 269, 20, 295, 11, 85, 103, 140, 9, 71, 113, 55, 34, 110, 76, 49, 57
Offset: 1

Views

Author

Eric Angelini, Feb 02 2009

Keywords

Comments

The old entry with this A-number was a duplicate of A030298.
a(52) is currently unknown. - Donovan Johnson
a(52)-a(10000) were found using a conjunction of Mathematica and Kim Walisch's primecount program. The additional values of the prime-counting function can be found in the second a-file. - Matthew House, Dec 23 2016

Examples

			1 -> 1; 1 step to see a repeat, so a(1) = 1.
2 -> 1 -> 1; 2 steps to see a repeat.
3 -> 2 -> 1 -> 1; 3 steps to see a repeat.
4 -> 11 -> 5 -> 3 -> 2 -> 1 -> 1; 6 steps to see a repeat.
6 -> 12 -> 112 -> 11114 -> 1733 -> 270 -> 12223 -> 7128 -> 11122225 -> 33991010 -> 13913661 -> 2107998 -> 12222775 -> 33910130 -> 131212367 -> 56113213 -> 6837229 -> 4201627 -> 266366 -> 112430 -> 131359 -> 7981 -> 969 -> 278 -> 134 -> 119 -> 47 -> 15 -> 23 -> 9 -> 22 -> 15; 31 steps to see a repeat.
9 -> 22 -> 15 -> 23 -> 9; 4 steps to see a repeat.
From _David Applegate_ and _N. J. A. Sloane_, Feb 09 2009: (Start)
The trajectories of the numbers 1 through 17, up to and including the first repeat, are as follows. Note that a(n) is one less than the number of terms shown.
[1, 1]
[2, 1, 1]
[3, 2, 1, 1]
[4, 11, 5, 3, 2, 1, 1]
[5, 3, 2, 1, 1]
[6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[7, 4, 11, 5, 3, 2, 1, 1]
[8, 111, 212, 1116, 112211, 52626, 124441, 28192, 11111152, 111165448, 1117261018, 1910112963, 252163429, 42205629, 2914219, 454002, 127605, 231542, 110938, 15631, 44510, 13605, 23155, 3582, 12246, 12637, 1509, 296, 11112, 111290, 131172, 1127117, 76613, 9470, 13161, 21328, 11111114, 14142115, 3625334, 1125035, 348169, 78151, 11369, 1373, 220, 1135, 349, 70, 134, 119, 47, 15, 23, 9, 22, 15]
[9, 22, 15, 23, 9]
[10, 13, 6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[11, 5, 3, 2, 1, 1]
[12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[13, 6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[14, 14]
[15, 23, 9, 22, 15]
[16, 1111, 526, 156, 1126, 1103, 185, 312, 11126, 1734, 1277, 206, 127, 31, 11, 5, 3, 2, 1, 1]
[17, 7, 4, 11, 5, 3, 2, 1, 1]
For n = 18 see A077960.
(End)
		

Crossrefs

See A156055 for another version.

Programs

  • GBnums
    void ea (n)
    {
    mpz u[] ; // factors
    mpz tr[]; // sequence
    print(n);
    while(n > 1)
    {
    lfactors(u,n); // factorize into u
    vmap(u,pi); // replace factors by rank
    n = catv(u); // concatenate
    print(n);
    if(vsearch(tr,n) > 0) break; // loop found
    vpush(tr,n); // remember n
    }
    println('');
    }
    // Jacques Tramu
    
  • Haskell
    import Data.List (genericIndex)
    a098282 n = f [n] where
       f xs = if y `elem` xs then length xs else f (y:xs) where
         y = genericIndex (map a087712 [1..]) (head xs - 1)
    -- Reinhard Zumkeller, Jul 14 2013
  • Maple
    with(numtheory):
    f := proc(n) local t1, v, r, x, j;
    if (n = 1) then return 1; end if;
    t1 := ifactors(n): v := 0;
    for x in op(2,t1) do r := pi(x[1]):
    for j from 1 to x[2] do
    v := v * 10^length(r) + r;
    end do; end do; v; end proc;
    t := proc(n) local v, l, s; v := n; s := {v}; l := [v]; v := f(v);
    while not v in s do s := s union {v}; l := [op(l),v]; v := f(v); end do;
    [op(l),v];
    end proc; [seq(nops(t(n))-1, n=1..17)];
    # David Applegate and N. J. A. Sloane, Feb 09 2009
  • Mathematica
    f[n_] := If[n==1,1,FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@#
    & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@n])]];
    g[n_] := Length@ NestWhileList[f, n, UnsameQ, All] - 1; Array[g, 39]
    (* Robert G. Wilson v, Feb 02 2009; modified slightly by Farideh Firoozbakht, Feb 10 2009 *)

Extensions

a(8) and a(10) found by Jacques Tramu
Extended through a(39) by Robert G. Wilson v, Feb 02 2009
Terms through a(39) corrected by Farideh Firoozbakht, Feb 10 2009
a(40)-a(51) from Donovan Johnson, Jan 08 2011
More terms from and a(40) corrected by Matthew House, Dec 23 2016

A077960 Trajectory of 18 under iteration of the map k -> A087712(k).

Original entry on oeis.org

18, 122, 118, 117, 226, 130, 136, 1117, 187, 57, 28, 114, 128, 1111111, 52628, 111748, 114663, 212174, 110111, 35131, 81414, 122615, 33341, 4584, 111243, 25475, 33171, 21339, 22351, 41127, 21621, 2920, 111321, 2224811, 223249
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2009

Keywords

Comments

a(n) = 1 for n >= 111.
The old entry with this A-number was a duplicate of A077919.

Crossrefs

A144914 Trajectory of 40 under iteration of the map k -> A087712(k).

Original entry on oeis.org

40, 1113, 2416, 111136, 11111936, 1111111115298, 1291622143616, 11111114421614356, 1180446322201364, 114902402126478, 12851299161710, 1326073277802, 124682398018, 113183781186, 124271634111, 21770237322, 1222221326084, 1151561573555, 33189494813, 542767316
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2009

Keywords

Comments

Does this trajectory converge?
Yes, for n >= 99 a(n) = 1. - Andrew Howroyd, Feb 06 2018

Crossrefs

Extensions

Terms a(8) and beyond corrected by Andrew Howroyd, Feb 06 2018

A144760 Trajectory of 6 under iteration of the map k -> A087712(k).

Original entry on oeis.org

6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15, 23, 9, 22
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2009

Keywords

Comments

31 steps to see a repeat.

Crossrefs

A144813 Trajectory of 8 under iteration of the map k -> A087712(k).

Original entry on oeis.org

8, 111, 212, 1116, 112211, 52626, 124441, 28192, 11111152, 111165448, 1117261018, 1910112963, 252163429, 42205629, 2914219, 454002, 127605, 231542, 110938, 15631, 44510, 13605, 23155, 3582, 12246, 12637, 1509, 296
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2009

Keywords

Comments

55 steps to see a repeat.

Crossrefs

A156055 Define a map f by f(0) = f(1) = 0, otherwise f(k) = A087712(k); then a(n) is the number of steps for the trajectory of n under repeated iteration of f to "terminate".

Original entry on oeis.org

1, 2, 3, 6, 4, 30, 7, 54, 3, 32, 5, 29, 31, 0, 3, 19, 8, 112, 55, 15, 27, 3, 3, 26, 1, 20, 223, 102, 33, 13, 6, 162, 1, 9, 10, 75, 30, 113, 21
Offset: 1

Views

Author

Robert G. Wilson v, Feb 02 2009

Keywords

Comments

Here "terminate" means reaching 0 or a cycle.
From M. F. Hasler, Feb 11 2009: (Start)
"Reaching a cycle" could be better defined: does it mean "reach a value that occurred earlier" or "reach an element belonging to a cycle"?
I think the second is the case, but the value 0 is currently listed at n=14, wouldn't it correspond to x=15 = least element of a nontrivial cycle?
So would the offset be 2 ? or is there a missing term (since the first terms 1,2,3 seem well to correspond to x=1,2,3)? (End)

Examples

			a(4) = 6 because 4 -> [{2,2}->{1,1}] ->[{11}->{5}] -> [{5}->{3}] -> [{3}->{2}] -> [{2}->{1}] -> [{1}->{0}].
		

Crossrefs

A variant of A098282, which is the official version of this sequence.
Cf. A087712.

Programs

  • Mathematica
    f[n_] := FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@# & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@n])]; g[n_] := Length@ NestWhileList[f, n, UnsameQ, All] - 2; Array[g, 39]

Extensions

Edited by N. J. A. Sloane, Feb 10 2009

A144814 Trajectory of 10 under iteration of the map k -> A087712(k).

Original entry on oeis.org

10, 13, 6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2009

Keywords

Comments

33 steps to see a repeat.

Crossrefs

A144915 Trajectory of 16 under iteration of the map k -> A087712(k).

Original entry on oeis.org

16, 1111, 526, 156, 1126, 1103, 185, 312, 11126, 1734, 1277, 206, 127, 31, 11, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2009

Keywords

Comments

19 steps to see a repeat.

Crossrefs

A359486 Indices of primes in A087712.

Original entry on oeis.org

3, 4, 5, 10, 11, 15, 17, 20, 31, 34, 41, 45, 46, 59, 60, 67, 69, 75, 80, 82, 83, 85, 90, 93, 102, 109, 119, 127, 136, 153, 155, 157, 170, 179, 191, 205, 206, 207, 211, 221, 230, 236, 241, 246, 249, 253, 254, 272, 276, 277, 283, 295, 309, 314, 322, 327, 328, 331, 332, 334, 345
Offset: 1

Views

Author

Jean-Marc Rebert, Jan 02 2023

Keywords

Crossrefs

A145077 Highest point reached in trajectory of n described in A098282, or -1 if no cycle is ever reached.

Original entry on oeis.org

1, 2, 3, 11, 5, 131212367, 11, 1910112963, 23, 131212367, 11, 131212367, 131212367, 14, 23, 11126, 17, 222312455509, 1910112963, 1135, 1112122, 23, 23, 1112122, 33, 11126, 133156118699543, 222312455509, 131212367, 1135, 31, 111151786119, 33, 34, 35, 2455612
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Feb 09 2009

Keywords

Comments

a(52) is currently unknown. - Donovan Johnson, Jan 08 2011
a(40) is probably incorrect and should be 11111114421614356. (See corrections to A098282 and A144914.)

Crossrefs

Extensions

More terms from Donovan Johnson, Jan 08 2011
Showing 1-10 of 12 results. Next