cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098282 Iterate the map k -> A087712(k) starting at n; a(n) is the number of steps at which we see a repeated term for the first time; or -1 if the trajectory never repeats.

Original entry on oeis.org

1, 2, 3, 6, 4, 31, 7, 55, 4, 33, 5, 30, 32, 1, 4, 19, 8, 112, 56, 16, 27, 4, 4, 26, 2, 20, 223, 102, 34, 14, 6, 162, 2, 9, 10, 75, 31, 113, 21, 100, 33, 20, 2, 23, 30, 57, 5, 28, 24, 30, 224, 269, 20, 295, 11, 85, 103, 140, 9, 71, 113, 55, 34, 110, 76, 49, 57
Offset: 1

Views

Author

Eric Angelini, Feb 02 2009

Keywords

Comments

The old entry with this A-number was a duplicate of A030298.
a(52) is currently unknown. - Donovan Johnson
a(52)-a(10000) were found using a conjunction of Mathematica and Kim Walisch's primecount program. The additional values of the prime-counting function can be found in the second a-file. - Matthew House, Dec 23 2016

Examples

			1 -> 1; 1 step to see a repeat, so a(1) = 1.
2 -> 1 -> 1; 2 steps to see a repeat.
3 -> 2 -> 1 -> 1; 3 steps to see a repeat.
4 -> 11 -> 5 -> 3 -> 2 -> 1 -> 1; 6 steps to see a repeat.
6 -> 12 -> 112 -> 11114 -> 1733 -> 270 -> 12223 -> 7128 -> 11122225 -> 33991010 -> 13913661 -> 2107998 -> 12222775 -> 33910130 -> 131212367 -> 56113213 -> 6837229 -> 4201627 -> 266366 -> 112430 -> 131359 -> 7981 -> 969 -> 278 -> 134 -> 119 -> 47 -> 15 -> 23 -> 9 -> 22 -> 15; 31 steps to see a repeat.
9 -> 22 -> 15 -> 23 -> 9; 4 steps to see a repeat.
From _David Applegate_ and _N. J. A. Sloane_, Feb 09 2009: (Start)
The trajectories of the numbers 1 through 17, up to and including the first repeat, are as follows. Note that a(n) is one less than the number of terms shown.
[1, 1]
[2, 1, 1]
[3, 2, 1, 1]
[4, 11, 5, 3, 2, 1, 1]
[5, 3, 2, 1, 1]
[6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[7, 4, 11, 5, 3, 2, 1, 1]
[8, 111, 212, 1116, 112211, 52626, 124441, 28192, 11111152, 111165448, 1117261018, 1910112963, 252163429, 42205629, 2914219, 454002, 127605, 231542, 110938, 15631, 44510, 13605, 23155, 3582, 12246, 12637, 1509, 296, 11112, 111290, 131172, 1127117, 76613, 9470, 13161, 21328, 11111114, 14142115, 3625334, 1125035, 348169, 78151, 11369, 1373, 220, 1135, 349, 70, 134, 119, 47, 15, 23, 9, 22, 15]
[9, 22, 15, 23, 9]
[10, 13, 6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[11, 5, 3, 2, 1, 1]
[12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[13, 6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[14, 14]
[15, 23, 9, 22, 15]
[16, 1111, 526, 156, 1126, 1103, 185, 312, 11126, 1734, 1277, 206, 127, 31, 11, 5, 3, 2, 1, 1]
[17, 7, 4, 11, 5, 3, 2, 1, 1]
For n = 18 see A077960.
(End)
		

Crossrefs

See A156055 for another version.

Programs

  • GBnums
    void ea (n)
    {
    mpz u[] ; // factors
    mpz tr[]; // sequence
    print(n);
    while(n > 1)
    {
    lfactors(u,n); // factorize into u
    vmap(u,pi); // replace factors by rank
    n = catv(u); // concatenate
    print(n);
    if(vsearch(tr,n) > 0) break; // loop found
    vpush(tr,n); // remember n
    }
    println('');
    }
    // Jacques Tramu
    
  • Haskell
    import Data.List (genericIndex)
    a098282 n = f [n] where
       f xs = if y `elem` xs then length xs else f (y:xs) where
         y = genericIndex (map a087712 [1..]) (head xs - 1)
    -- Reinhard Zumkeller, Jul 14 2013
  • Maple
    with(numtheory):
    f := proc(n) local t1, v, r, x, j;
    if (n = 1) then return 1; end if;
    t1 := ifactors(n): v := 0;
    for x in op(2,t1) do r := pi(x[1]):
    for j from 1 to x[2] do
    v := v * 10^length(r) + r;
    end do; end do; v; end proc;
    t := proc(n) local v, l, s; v := n; s := {v}; l := [v]; v := f(v);
    while not v in s do s := s union {v}; l := [op(l),v]; v := f(v); end do;
    [op(l),v];
    end proc; [seq(nops(t(n))-1, n=1..17)];
    # David Applegate and N. J. A. Sloane, Feb 09 2009
  • Mathematica
    f[n_] := If[n==1,1,FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@#
    & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@n])]];
    g[n_] := Length@ NestWhileList[f, n, UnsameQ, All] - 1; Array[g, 39]
    (* Robert G. Wilson v, Feb 02 2009; modified slightly by Farideh Firoozbakht, Feb 10 2009 *)

Extensions

a(8) and a(10) found by Jacques Tramu
Extended through a(39) by Robert G. Wilson v, Feb 02 2009
Terms through a(39) corrected by Farideh Firoozbakht, Feb 10 2009
a(40)-a(51) from Donovan Johnson, Jan 08 2011
More terms from and a(40) corrected by Matthew House, Dec 23 2016

A087712 a(1) = 1; if n = k-th prime, a(n) = k; otherwise write all prime factors of n in nondecreasing order, replace each prime with its rank, and concatenate the ranks.

Original entry on oeis.org

1, 1, 2, 11, 3, 12, 4, 111, 22, 13, 5, 112, 6, 14, 23, 1111, 7, 122, 8, 113, 24, 15, 9, 1112, 33, 16, 222, 114, 10, 123, 11, 11111, 25, 17, 34, 1122, 12, 18, 26, 1113, 13, 124, 14, 115, 223, 19, 15, 11112, 44, 133, 27, 116, 16, 1222, 35, 1114, 28, 110, 17, 1123, 18
Offset: 1

Views

Author

Eric Angelini, Feb 02 2009

Keywords

Comments

Concatenations of consecutive entries of A112798. - R. J. Mathar, Feb 09 2009
The old entry with this A-number was a duplicate of A082467.

Examples

			n = 2 = first prime, a(2) = 1.
n = 3 = second prime, a(3) = 2.
n = 4 = 2*2 -> 1,1 -> 11, so a(4) = 11.
n = 6 = 2*3 -> 1,2 -> 12, so a(6) = 12.
n = 12 = 2*2*3 -> 1,1,2 -> 112, so a(12) = 112.
		

Crossrefs

See A098282 for lengths of trajectories. Cf. A077960, A156055.

Programs

  • Haskell
    a087712 1 = 1
    a087712 n = read $ concatMap (show . a049084) $ a027746_row n :: Integer
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    # Maple program from R. J. Mathar, Feb 08 2009: (Start)
    cat2 := proc(a,b) a*10^(max(1,ilog10(b)+1))+b ; end:
    A049084 := proc(p) if isprime(p) then numtheory[pi](p) ; else 0 ; fi; end:
    A087712 := proc(n) local pf,a,p,ex ; if isprime(n) then A049084(n) ; elif n = 1 then 1 ; else pf := ifactors(n)[2] ; a := 0 ; for p in pf do for ex from 1 to op(2,p) do a := cat2(a, A049084(op(1,p)) ) ; od: od: fi; end:
    seq(A087712(n),n=1..140); # (End)
    # (Maple program from David Applegate and N. J. A. Sloane, Feb 09 2009)
    with(numtheory):
    f := proc(n) local t1, v, r, x, j;
    if (n = 1) then return 1; end if;
    t1 := ifactors(n): v := 0;
    for x in op(2,t1) do r := pi(x[1]):
    for j from 1 to x[2] do
    v := v * 10^length(r) + r;
    end do; end do; v; end proc;
  • Mathematica
    f[n_] := If[n == 1, 1, FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@# & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@ n])]]; Array[f, 61] (* Robert G. Wilson v, Jun 06 2011 *)
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n == 1: return 1
        return int("".join(str(primepi(p))*e for p, e in factorint(n).items()))
    print([a(n) for n in range(1, 62)]) # Michael S. Branicky, Oct 01 2024

Extensions

More terms from R. J. Mathar (Feb 08 2009) and independently from David Applegate and N. J. A. Sloane, Feb 09 2009
Showing 1-2 of 2 results.