cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087732 Smaller of twin primes of the form P=j*P(i)#-1 and P=j*P(i)#+1 with 0 < j < P(i+1), where P(i) denotes i-th prime and P(i)# the i-th primorial number A002110(i).

Original entry on oeis.org

3, 5, 11, 17, 29, 59, 149, 179, 419, 1049, 2309, 9239, 11549, 25409, 180179, 270269, 300299, 330329, 390389, 420419, 4084079, 8678669, 106696589, 892371479, 2454021569, 3569485919, 4238764529, 4461857399, 4908043139, 6023507489
Offset: 1

Views

Author

Pierre CAMI, Sep 29 2003

Keywords

Comments

Probably an infinite sequence. Using the UB874 program (UBASIC) I found the first 123 primes of the sequence for i <= 382. I think I have a proof that the sequence is infinite.

Examples

			17=3*P(2)#-1 and 19=3*P(2)#+1 are twin primes, so 17 is in the sequence, corresponding to i=2, j=3. Again, 182*2633#-1 and 182*2633#+1 are prime twins, with j=182, i=382. These are 1111-digit twin primes.
The above prime is a(124). - _Robert G. Wilson v_, Jul 22 2015
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Range[Prime[n + 1] - 1] Times @@ Prime@ Range@ n; s = Select[ Union@ Flatten@ Join[ Array[f, 10] - 1, Array[f, 11, 0] + 1], PrimeQ@# &]; s[[Select[ Range[-1 + Length@ s], s[[#]] + 2 == s[[# + 1]] &]]] (* Robert G. Wilson v, Jul 22 2015 *)
  • PARI
    do(lastprime)=my(v=List(),P=1,p=2); forprime(q=3,nextprime(lastprime\1+1), P*=p; for(j=1,q-1, if(isprime(j*P-1)&&isprime(j*P+1), listput(v, j*P-1))); p=q); Vec(v) \\ Charles R Greathouse IV, Jul 22 2015

Extensions

Edited by Jud McCranie, Oct 06 2003
Corrected by T. D. Noe, Nov 15 2006