cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087803 Number of unlabeled rooted trees with at most n nodes.

Original entry on oeis.org

1, 2, 4, 8, 17, 37, 85, 200, 486, 1205, 3047, 7813, 20299, 53272, 141083, 376464, 1011311, 2732470, 7421146, 20247374, 55469206, 152524387, 420807242, 1164532226, 3231706871, 8991343381, 25075077710, 70082143979, 196268698287, 550695545884, 1547867058882
Offset: 1

Views

Author

Hugo Pfoertner, Oct 12 2003

Keywords

Comments

Number of equations (order conditions) that must be satisfied to achieve order n in the construction of a Runge-Kutta method for the numerical solution of an ordinary differential equation. - Hugo Pfoertner, Oct 12 2003

References

  • Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations, (1987) Wiley, Chichester
  • See link for more references.

Crossrefs

a(n) = Sum_(k=1..n) A000081(k).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; b(n) +`if`(n<1, 0, a(n-1)) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 21 2012
  • Mathematica
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[b[n - j]* DivisorSum[j, # *b[#]&], {j, 1, n-1}]/(n-1); a[1] = 1; a[n_] := a[n] = b[n] + a[n-1]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *)
    t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n]; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)
    Needs["NumericalDifferentialEquationAnalysis`"]
    Drop[Accumulate[Join[{0},ButcherTreeCount[20]]],1] (* Peter Luschny, Aug 18 2016 *)
  • PARI
    a000081(k) = local(A = x); if( k<1, 0, for( j=1, k-1, A /= (1 - x^j + x * O(x^k))^polcoeff(A, j)); polcoeff(A, k));
    a(n) = sum(k=1, n, a000081(k)) \\ Altug Alkan, Nov 10 2015
    
  • Sage
    def A087803_list(len):
        a, t = [1], [0,1]
        for n in (1..len-1):
            S = [t[n-k+1]*sum(d*t[d] for d in divisors(k)) for k in (1..n)]
            t.append(sum(S)//n)
            a.append(a[-1]+t[-1])
        return a
    A087803_list(20) # Peter Luschny, Aug 18 2016

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.664861031240097088000569... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = A187770 / (1 - 1 / A051491). - Vladimir Reshetnikov, Aug 12 2016

Extensions

Corrected and extended by Alois P. Heinz, Aug 21 2012
Renamed (old name is in comments) by Vladimir Reshetnikov, Aug 23 2016