A087803 Number of unlabeled rooted trees with at most n nodes.
1, 2, 4, 8, 17, 37, 85, 200, 486, 1205, 3047, 7813, 20299, 53272, 141083, 376464, 1011311, 2732470, 7421146, 20247374, 55469206, 152524387, 420807242, 1164532226, 3231706871, 8991343381, 25075077710, 70082143979, 196268698287, 550695545884, 1547867058882
Offset: 1
Keywords
References
- Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations, (1987) Wiley, Chichester
- See link for more references.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- A. Cayley, On the analytical forms called trees, Amer. J. Math., 4 (1881), 266-268.
- I. Th. Famelis, S. N. Papakostas and Ch. Tsitouras, Symbolic Derivation of Runge-Kutta Order Conditions.
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis (annotated cached copy).
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
- Florian Ingels, Revisiting Tree Isomorphism: An Algorithmic Bric-à-Brac, arXiv:2309.14441 [cs.DS], 2023-2024. See p. 17.
- Eric Weisstein's World of Mathematics, Rooted Tree.
- Index entries for sequences related to rooted trees.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) end: a:= proc(n) option remember; b(n) +`if`(n<1, 0, a(n-1)) end: seq(a(n), n=1..50); # Alois P. Heinz, Aug 21 2012
-
Mathematica
b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[b[n - j]* DivisorSum[j, # *b[#]&], {j, 1, n-1}]/(n-1); a[1] = 1; a[n_] := a[n] = b[n] + a[n-1]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 10 2015, after Alois P. Heinz *) t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n]; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *) Needs["NumericalDifferentialEquationAnalysis`"] Drop[Accumulate[Join[{0},ButcherTreeCount[20]]],1] (* Peter Luschny, Aug 18 2016 *)
-
PARI
a000081(k) = local(A = x); if( k<1, 0, for( j=1, k-1, A /= (1 - x^j + x * O(x^k))^polcoeff(A, j)); polcoeff(A, k)); a(n) = sum(k=1, n, a000081(k)) \\ Altug Alkan, Nov 10 2015
-
Sage
def A087803_list(len): a, t = [1], [0,1] for n in (1..len-1): S = [t[n-k+1]*sum(d*t[d] for d in divisors(k)) for k in (1..n)] t.append(sum(S)//n) a.append(a[-1]+t[-1]) return a A087803_list(20) # Peter Luschny, Aug 18 2016
Formula
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.664861031240097088000569... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = A187770 / (1 - 1 / A051491). - Vladimir Reshetnikov, Aug 12 2016
Extensions
Corrected and extended by Alois P. Heinz, Aug 21 2012
Renamed (old name is in comments) by Vladimir Reshetnikov, Aug 23 2016
Comments