cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087893 Number of numbers m satisfying 1 < m < n such that m^2 == m (mod n).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 6, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, 0, 6, 0, 2, 2, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, 6, 0, 2, 2, 0, 2, 6, 0, 2, 2, 6, 0, 2, 0, 2, 2, 2, 2, 6, 0, 2, 0, 2, 0, 6, 2, 2, 2, 2, 0, 6, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 6, 0, 2, 6
Offset: 1

Views

Author

Lekraj Beedassy, Oct 13 2003

Keywords

Comments

The number of nontrivial unitary divisors of n (i.e., excluding 1 and n). - Amiram Eldar, May 29 2020
a(n) first deviates from b(n) = 2*A079275(n) at a(210) = 14 <> b(210) = 12. - Georg Fischer, May 23 2024

References

  • C. R. J. Singleton, "Prime Function Problem": Solution to Problem 2355, Journal of Recreational Mathematics, Vol. 29(3) pp. 232-234, 1998.

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[2^(PrimeNu[n]) - 2, {n, 2, 50}]] (* or *) Table[2*Module[{c = PrimeNu[n]}, (c (c - 1))/2], {n, 1, 20}] (* G. C. Greubel, May 20 2017 *)
  • PARI
    concat([0], for(n=2, 50, print1( 2^(omega(n)) - 2, ", "))) \\ G. C. Greubel, May 20 2017

Formula

a(n) = 2^omega(n) - 2 (for n > 1).