cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309307 Number of unitary divisors of n (excluding 1).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 7, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 7, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 7, 1, 3, 3, 1, 3, 7, 1, 3, 3, 7, 1, 3, 1, 3, 3, 3, 3, 7, 1, 3, 1, 3, 1, 7, 3, 3, 3, 3, 1, 7, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 21 2019

Keywords

Comments

Also the number of squarefree divisors > 1.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
    Table[2^PrimeNu[n] - 1, {n, 1, 100}]

Formula

G.f.: Sum_{k>=2} mu(k)^2*x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)*(zeta(s)/zeta(2*s) - 1).
a(n) = 2^omega(n) - 1.
a(n) = A000225(A001221(n)) = A034444(n) - 1.
Sum_{k=1..n} a(k) ~ 6*n*(log(n) + 2*gamma - 1 - Pi^2/6 - 12*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 16 2019
a(n) = -1 + Sum_{d|n} mu(d)^2. - Wesley Ivan Hurt, Feb 04 2022

A335269 Numbers for which the harmonic mean of the nontrivial unitary divisors is an integer.

Original entry on oeis.org

228, 345, 1645, 2120, 4025, 4386, 4977, 7725, 8041, 13026, 23881, 24157, 24336, 51925, 88473, 115957, 150161, 169893, 229177, 255041, 278721, 322592, 342637, 377201, 490725, 538625, 656937, 1497517, 1566981, 2132021, 3256261, 3847001, 4646101, 5054221, 5524897
Offset: 1

Views

Author

Amiram Eldar, May 29 2020

Keywords

Comments

A number m is a term if the set {d|m ; d > 1, d < m, gcd(d, m/d) = 1} is nonempty and the harmonic mean its members is an integer.
The corresponding harmonic means are 8, 9, 15, 16, 25, 12, 21, 15, 33, 12, ...
Equivalently, numbers m such that omega(m) > 1 and (usigma(m)-m-1) | m*(2^omega(m)-2), where usigma is the sum of unitary divisors (A034448), and 2^omega(m)-2 = A034444(m)-2 = A087893 (m) is the number of the nontrivial unitary divisors of m.
The squarefree terms of A247078 are also terms of this sequence.

Examples

			228 is a term since the harmonic mean of its nontrivial unitary divisors, {3, 4, 12, 19, 57, 76} is 8 which is an integer.
		

Crossrefs

The unitary version of A247078.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[10^6], (omega = PrimeNu[#]) > 1 && Divisible[#*(2^omega - 2), usigma[#] - # - 1] &]

A066341 Sum of distinct terms in n-th row of Fermat's triangle.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 1, 12, 1, 14, 1, 16, 17, 1, 1, 20, 1, 22, 23, 24, 1, 26, 1, 28, 1, 30, 1, 94, 1, 1, 35, 36, 37, 38, 1, 40, 41, 42, 1, 130, 1, 46, 47, 48, 1, 50, 1, 52, 53, 54, 1, 56, 57, 58, 59, 60, 1, 184, 1, 64, 65, 1, 67, 202, 1, 70, 71, 214, 1, 74, 1, 76, 77, 78, 79, 238, 1
Offset: 2

Views

Author

Wouter Meeussen, Jan 01 2002

Keywords

Examples

			Fermat's triangle (A066340) is {1}, {1, 1}, {1, 0, 1}, {1, 1, 1, 1}, {1, 4, 3, 4, 1}, ... and the distinct terms in each row are {1}, {1}, {0, 1}, {1}, {1, 3, 4}, ... with sums 1, 1, 1, 1, 8, ...
		

Crossrefs

Programs

  • GAP
    List(List(List([2..80],n->List([1..n-1],m->PowerMod(m,Phi(n),n))),Set),Sum); # Muniru A Asiru, Aug 06 2018
  • Mathematica
    Plus@@@(Union/@Table[ (PowerMod[ #, EulerPhi[ k ], k ])&/@ Range[ k-1 ], {k, 2, 256} ]) or equivalently Table[ w=Length[ FactorInteger[ k ]];(2^(w-1)-1)*k+2^(w-1), {k, 2, 256} ]
  • PARI
    A066341(n) = { my(ph = eulerphi(n),m=Map(),t,s=0); for(k=1,n-1,t = ((k^ph)%n); if(!mapisdefined(m, t), s += t; mapput(m,t,t))); (s); }; \\ Antti Karttunen, Aug 06 2018
    

Formula

Conjectures from Ridouane Oudra, Apr 05 2025: (Start)
a(n) = (n+1)*2^(omega(n)-1) - n, where omega(n) = A001221(n).
a(n) = (n+1)*A007875(n) - n.
a(n) = (n/2)*A087893(n) + A007875(n). (End)
Showing 1-3 of 3 results.