cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087903 Triangle read by rows of the numbers T(n,k) (n > 1, 0 < k < n) of set partitions of n of length k which do not have a proper subset of parts with a union equal to a subset {1,2,...,j} with j < n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 48, 16, 1, 1, 57, 202, 140, 25, 1, 1, 120, 747, 916, 325, 36, 1, 1, 247, 2559, 5071, 3045, 651, 49, 1, 1, 502, 8362, 25300, 23480, 8260, 1176, 64, 1, 1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1, 1, 2036, 82509, 525608, 998830, 749154, 253764, 40944, 3105, 100, 1
Offset: 2

Views

Author

Mike Zabrocki, Oct 14 2003

Keywords

Comments

Another version of the triangle T(n,k), 0 <= k <= n, given by [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938; see also A086329 for a triangle transposed. - Philippe Deléham, Jun 13 2004

Examples

			T(2,1)=1 for {12};
T(3,1)=1, T(3,2) = 1 for {123}; {13|2};
T(4,1)=1, T(4,2)=4, T(4,3)=1 for {1234}; {14|23}, {13|24}, {124|3}, {134|2}; {14|2|3}.
From _Philippe Deléham_, Jul 16 2007: (Start)
Triangle begins:
  1;
  1,    1;
  1,    4,     1;
  1,   11,     9,      1;
  1,   26,    48,     16,      1;
  1,   57,   202,    140,     25,     1;
  1,  120,   747,    916,    325,    36,     1;
  1,  247,  2559,   5071,   3045,   651,    49,    1;
  1,  502,  8362,  25300,  23480,  8260,  1176,   64,  1;
  1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1;
  ...
Triangle T(n,k), 0 <= k <= n, given by [1,0,2,0,3,0,4,0,...] DELTA [0,1,0,1,0,1,0,...] begins:
  1;
  1,    0;
  1,    1,     0;
  1,    4,     1,      0;
  1,   11,     9,      1,      0;
  1,   26,    48,     16,      1,     0;
  1,   57,   202,    140,     25,     1,     0;
  1,  120,   747,    916,    325,    36,     1,    0;
  1,  247,  2559,   5071,   3045,   651,    49,    1,  0;
  1,  502,  8362,  25300,  23480,  8260,  1176,   64,  1, 0;
  1, 1013, 26520, 117962, 159736, 84456, 19404, 1968, 81, 1, 0;
  ...
(End)
		

Crossrefs

Programs

  • Maple
    A := proc(n,k) option remember; local j,ell; if n<=0 or k>=n then 0; elif k=1 or k=n-1 then 1; else S2(n-1,k)+add(add((k-ell-1)*A(n-j-1,k-ell)*S2(j,ell),ell=0..k-1),j=0..n-2); fi; end: S2 := (n,k)->if n<0 or k>n then 0; elif k=n or k=1 then 1 else k*S2(n-1,k)+S2(n-1,k-1); fi:
  • Mathematica
    nmax = 12; t[n_, k_] := t[n, k] = StirlingS2[n-1, k] + Sum[ (k-d-1)*t[n-j-1, k-d]*StirlingS2[j, d], {d, 0, k-1}, {j, 0, n-2}]; Flatten[ Table[ t[n, k], {n, 2, nmax}, {k, 1, n-1}]] (* Jean-François Alcover, Oct 04 2011, after given formula *)
  • SageMath
    @CachedFunction # T = A087903
    def T(n,k): return stirling_number2(n-1, k) + sum( sum( (k-m-1)*T(n-j-1, k-m)*stirling_number2(j, m) for m in (0..k-1) ) for j in (0..n-2) )
    flatten([[T(n, k) for k in (1..n-1)] for n in (2..14)]) # G. C. Greubel, Jun 21 2022

Formula

T(n, n-1) = T(n,1) = 1.
T(n, n-2) = (n-2)^2.
T(n, 2) = A000295(n).
T(n, k) = S2(n-1, k) + Sum_{j=0..n-2} Sum_{d=0..k-1} (k-d-1)*T(n-j-1, k-d)*S2(j, d), where S2(n, k) is the Stirling number of the second kind.
Sum_{k = 1..n-1} T(n, k) = A074664(n). - Philippe Deléham, Jun 13 2004
G.f.: 1-1/(1+add(add(q^n t^k S2(n, k), k=1..n), n >= 1)) where S2(n, k) are the Stirling numbers of the 2nd kind A008277. - Mike Zabrocki, Sep 03 2005