cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087909 a(n) = Sum_{d|n} (n/d)^(d-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 9, 2, 14, 11, 23, 2, 83, 2, 73, 108, 202, 2, 546, 2, 905, 780, 1037, 2, 5553, 627, 4111, 6644, 12647, 2, 40605, 2, 49682, 59172, 65555, 18028, 382424, 2, 262165, 531612, 869675, 2, 2706581, 2, 3147083, 5180382, 4194329, 2, 27246533, 117651
Offset: 1

Views

Author

Vladeta Jovovic, Oct 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= DivisorSum[n, (n/#)^(#-1) &]; Array[a, 30] (* G. C. Greubel, May 16 2018 *)
  • PARI
    a(n)=sumdiv(n, d, d^(n/d-1) );  /* Joerg Arndt, Oct 07 2012 */
    
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 17 2019

Formula

G.f.: Sum_{k>0} x^k/(1-k*x^k).
From Seiichi Manyama, Jun 17 2019: (Start)
L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k.
a(p) = 2 for prime p. (End)