cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087943 Numbers n such that 3 divides sigma(n).

Original entry on oeis.org

2, 5, 6, 8, 10, 11, 14, 15, 17, 18, 20, 22, 23, 24, 26, 29, 30, 32, 33, 34, 35, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 62, 65, 66, 68, 69, 70, 71, 72, 74, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 27 2003

Keywords

Comments

Numbers n such that in the prime factorization n = Product_i p_i^e_i, there is some p_i == 1 (mod 3) with e_i == 2 (mod 3) or some p_i == 2 (mod 3) with e_i odd. - Robert Israel, Nov 09 2016

Crossrefs

Programs

  • Maple
    select(n -> numtheory:-sigma(n) mod 3 = 0, [$1..1000]); # Robert Israel, Nov 09 2016
  • Mathematica
    Select[Range[1000],Mod[DivisorSigma[1,#],3]==0&] (* Enrique Pérez Herrero, Sep 03 2013 *)
  • PARI
    is(n)=sigma(n)%3==0 \\ Charles R Greathouse IV, Sep 04 2013
    
  • PARI
    is(n)=forprime(p=2,997,my(e=valuation(n,p)); if(e && Mod(p,3*p-3)^(e+1)==1, return(1), n/=p^e)); sigma(n)%3==0 \\ Charles R Greathouse IV, Sep 04 2013

Formula

a(n) << n^k for any k > 1, where << is the Vinogradov symbol. - Charles R Greathouse IV, Sep 04 2013
a(n) ~ n as n -> infinity: since Sum_{primes p == 2 (mod 3)} 1/p diverges, asymptotically almost every number is divisible by some prime p == 2 (mod 3) but not by p^2. - Robert Israel, Nov 09 2016
Because sigma(n) and sigma(3n)=A144613(n) differ by a multiple of 3, these are also the numbers n such that n divides sigma(3n). - R. J. Mathar, May 19 2020

Extensions

More terms from Benoit Cloitre and Ray Chandler, Oct 27 2003