cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A329963 Numbers k such that sigma(k) is not divisible by 3.

Original entry on oeis.org

1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 144, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 192, 193, 199, 201, 208, 211, 217, 219, 223, 225, 228, 229
Offset: 1

Views

Author

John L. Drost, Nov 25 2019

Keywords

Comments

A number k is in the sequence iff in its prime factorization, all primes p == 1 (mod 3) occur to such a power p^e that e != 2 (mod 3), and all primes == 2 (mod 3) occur to even powers. (3 can occur to any power.) This sequence is similar but not identical to many others; in particular, 343 is in this sequence, but not in A034022. (And here we don't have 196, although it is in A034022). - First sentence corrected and additional notes added by Antti Karttunen, Jul 03 2024, see also Robert Israel's Nov 09 2016 comment in A087943.
The asymptotic density of this sequence is 0 (Dressler, 1975). - Amiram Eldar, Jul 23 2020

Crossrefs

Complement of A087943. Positions of zeros in A354100, nonzeros in A074941.
Cf. A000203, A353815 (characteristic function).
Setwise difference A003136 \ A088535.
Subsequences: A002476, A068228, A351537, A374135.
Cf. also A088232.
Not the same as A034022.

Programs

Extensions

More terms from Joshua Oliver, Nov 26 2019
Data section further extended up to a(71), to better differentiate from nearby sequences - Antti Karttunen, Jul 04 2024

A204830 Numbers k whose divisors can be partitioned into three disjoint sets whose sums are all sigma(k)/3.

Original entry on oeis.org

120, 180, 240, 360, 420, 480, 504, 540, 600, 660, 672, 720, 780, 840, 960, 1080, 1260, 1320, 1440, 1512, 1560, 1584, 1620, 1680, 1800, 1848, 1890, 1920, 1980, 2016, 2040, 2160, 2184, 2280, 2340, 2352, 2376, 2400, 2520, 2640, 2688, 2760, 2772, 2856, 2880, 2940, 3000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 22 2012

Keywords

Comments

Subsequence of the intersection of A023197 and A087943.
If m is a term then so is m*p^k when p is coprime to m. - David A. Corneth, Mar 09 2024
Is this sequence equal to the sequence: "Numbers k such that sigma(k) is divisible by 3 and sigma(k) >= 3*k"? - David A. Corneth, Mar 17 2024
Answer: No. The numbers k with sigma(k) >= 3k and sigma(k) divisible by 3 that are not in this sequence are in A306476. - Amiram Eldar, Jun 22 2024

Examples

			180 is a term because sigma(180)/3 = 182 = 2 + 180 = 1+3+4+5+6+9+10+15+18+30+36+45 = 12+20+60+90 (summands are all the divisors of 180).
		

Crossrefs

Cf. A023197, A083207 (Zumkeller numbers -- numbers k whose divisors can be partitioned into two disjoint sets whose sums are both sigma(k)/2), A087943, A204831 (numbers k whose divisors can be partitioned into four disjoint sets whose sums are all sigma(k)/4), A306476.

A034020 Not of the form x^2 + x*y + y^2.

Original entry on oeis.org

2, 5, 6, 8, 10, 11, 14, 15, 17, 18, 20, 22, 23, 24, 26, 29, 30, 32, 33, 34, 35, 38, 40, 41, 42, 44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 58, 59, 60, 62, 65, 66, 68, 69, 70, 71, 72, 74, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105
Offset: 1

Views

Author

Keywords

Comments

Appears to be the sequence of nonsquare n such that sigma(n)==0 (mod 3). - Benoit Cloitre, Sep 17 2002
First counterexample is 147 = 11^2 + 11*2 + 2^2 since sigma(147) = 3 * 76. See A087943. - Charles R Greathouse IV, Jun 29 2011
Numbers n such that n-th coefficient of eta(x)^3/eta(x^3) is zero where eta(x) coefficients are given by A010815. - Benoit Cloitre, Oct 06 2005
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011

Crossrefs

Cf. A003136 (complement), A003627 (primes). Subsequence of A087943.

Programs

  • Haskell
    a034020 n = a034020_list !! (n-1)
    a034020_list = f [0..] a003136_list where
       f (x:xs) ys'@(y:ys) | x < y = x : f xs ys'
                           | otherwise = f xs ys
    -- Reinhard Zumkeller, Oct 30 2011
  • Mathematica
    Select[Range@ 105, ! Resolve[Exists[{x, y}, Reduce[# == x^2 + x y + y^2, {x, y}, Integers]]] &] (* Michael De Vlieger, Jan 06 2016 *)
  • PARI
    default(seriesprecision, 105); for(n=1, 105, if (polcoeff(eta(x)^3/eta(x^3)+O(x^(n+1)), n) == 0, print1(n,","))) \\ Benoit Cloitre, Oct 06 2005
    
  • PARI
    x='x+O('x^100); p=eta(x)^3/eta(x^3); for(n=1, 99, if(polcoeff(p, n)==0, print1(n, ", "))); \\ Altug Alkan, Nov 08 2015
    
  • PARI
    list(lim)=my(v=List(), y, t); lim\=1; for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, t); y++)); v=Set(v); setminus([2..lim], v) \\ Charles R Greathouse IV, Jul 05 2017
    

Formula

a(n) ~ n. - Charles R Greathouse IV, Jul 05 2017

Extensions

More terms from James Sellers, May 04 2000
Correct offset=1 by Ray Chandler, Jan 29 2009

A067051 The smallest k>1 such that k divides sigma(k*n) is equal to 3.

Original entry on oeis.org

2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2002

Keywords

Comments

The smallest m>1 such that m divides sigma(m*n) is 2, 3 or 6.
Appears to be the same sequence as A074629. - Ralf Stephan, Aug 18 2004. [Proof: Mathar link]
Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013

Crossrefs

Subsequence of A087943.

Programs

  • Magma
    [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
  • Mathematica
    Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    isok(n) = (sigma(2*n) % 2) && !(sigma(3*n) % 3); \\ Michel Marcus, Dec 26 2013
    

Formula

{n: A000203(n) mod 6 = 3.} (Old definition of A074629) - Labos Elemer, Aug 26 2002
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015
{n: A049605(n) = 3}. - R. J. Mathar, May 19 2020
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020
A087943 INTERSECT A028982. - R. J. Mathar, May 30 2020

A074627 Numbers n such that sigma(n) is divisible by 6.

Original entry on oeis.org

5, 6, 10, 11, 14, 15, 17, 20, 22, 23, 24, 26, 29, 30, 33, 34, 35, 38, 40, 41, 42, 44, 45, 46, 47, 51, 53, 54, 55, 56, 58, 59, 60, 62, 65, 66, 68, 69, 70, 71, 74, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89, 90, 92, 94, 95, 96, 99, 101, 102, 104, 105, 106, 107, 110, 113, 114, 115
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Comments

n=10: sigma(10) = 1+2+5+10 = 18 = 3*6.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 120, Divisible[DivisorSigma[1, #], 6] &] (* Michael De Vlieger, Feb 25 2017 *)
  • PARI
    isok(n) = !(sigma(n) % 6); \\ Michel Marcus, Dec 17 2013

Formula

A000203(n) modulo 6 = 0.
{n: A084301(n) = 0 }. - R. J. Mathar, May 19 2020
A087943 INTERSECT A028983. - R. J. Mathar, May 19 2020

A068391 Numbers n such that sigma(n) = 3*phi(n).

Original entry on oeis.org

2, 15, 357, 3339, 5049, 10659, 12441, 24969, 99693, 124355, 132957, 145145, 353133, 423657, 596037, 655707, 734517, 745503, 894387, 1406427, 1641783, 1823877, 1936557, 3295047, 4108401, 4194183, 4776201, 5574699, 5842137, 5971251, 6132789, 6953765, 7649915
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

From Farideh Firoozbakht, May 01 2009: (Start)
If m>1 and 2*3^m-1 is prime then n = 7*3^(m-1)*(2*3^m-1) is in the sequence.
Because sigma(n) = 8*(3^m-1)/2*(2*3^m) = 8*3^m*(3^m-1) = 3*6*(2*3^(m-2))*(2*3^m-2) = 3*phi(7)*phi(3^(m-1))*phi(2*3^m-1) = 3*phi(7*3^(m-1)*(2*3^m-1)) = 3*phi(n). (End)

Crossrefs

Cf. A000203.
Subsequence of A087943 (sigma(k) is a multiple of 3).

Programs

  • Mathematica
    Select[Range[765*10^4],DivisorSigma[1,#]==3EulerPhi[#]&] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    for(n=1,500000, if(sigma(n)==3*eulerphi(n),print1(n,",")))

Extensions

More terms from Rick L. Shepherd, May 14 2002

A274397 Positive integers m such that sigma(m) is divisible by 5.

Original entry on oeis.org

8, 19, 24, 27, 29, 38, 40, 54, 56, 57, 58, 59, 72, 76, 79, 87, 88, 89, 95, 104, 108, 109, 114, 116, 118, 120, 128, 133, 135, 136, 139, 145, 149, 152, 158, 168, 171, 174, 177, 178, 179, 184, 189, 190, 199, 200, 203, 209, 216, 218, 228, 229, 232, 236, 237, 239, 247, 248, 261, 264, 266, 267, 269, 270, 278, 280, 285, 290, 295, 296, 297
Offset: 1

Views

Author

M. F. Hasler, Jul 02 2016

Keywords

Comments

See the subsequence A274685 of odd terms for a remark on frequent pairs of the form (30k-3, 30k-1).
If m is in the sequence and gcd(k,m)=1, then k*m is also in the sequence. One might call "primitive" those terms which are not of this form, i.e., not a "coprime" multiple of an earlier term. The primitive terms are the primes and powers of primes within the sequence, cf. below.
Integers m > 0 where an integer k exists such that A000203(m) = A008587(k). - Felix Fröhlich, Jul 02 2016
For any prime p <> 5 there is an exponent k in {1, 3, 4} (depending on whether p is in A030433, A003631 or A030430) such that p^k is in this sequence. Given these p^k, the sequence consists of all numbers of the form n*p^(q*(k+1)-1) where n is coprime to p and q >= 1. Otherwise said, all numbers m which have some prime factor p with multiplicity q*(k+1)-1, where k = k(p) in {1, 3, 4} as introduced before. - M. F. Hasler, Jul 10 2016

Examples

			Some values for a(2^k): We have a(2) = 19, a(4) = 27, a(8) = 54, a(16) = 87, a(32) = 145, a(64) = 270, a(128) = 488, a(256) = 919, a(512) = 1736, a(1024) = 3267, a(2048) = 6258, a(4096) = 12035, a(8192) = 23160, a(16384) = 44878, a(32768) = 87207, a(65536) = 169911, a(131072) = 332009, a(262144) = 650031, a(524288) = 1274569, a(1048576) = 2503510, a(2097152) = 4924370, a(4194304) = 9697475, a(8388608) = 19116191.
		

Crossrefs

Cf. A000203, A028983 (sigma even), A087943 (sigma = 3k), A248150 (sigma = 4k); A028982 (sigma is odd), A248151 (sigma is not divisible by 4); A272930 (sigma(sigma(k)) = nk).

Programs

  • Maple
    select(t -> numtheory:-sigma(t) mod 5 = 0, [$1..1000]); # Robert Israel, Jul 12 2016
  • Mathematica
    Select[Range[300], Divisible[DivisorSigma[1, #], 5]&] (* Jean-François Alcover, Apr 09 2019 *)
  • PARI
    is(n)=sigma(n)%5==0
    
  • PARI
    is(n)=for(i=1,#n=factor(n)~,n[1,i] != 5 && (n[2,i]+1) % [5,4,4,2][n[1,i]%5] == 0 && return(1))

Formula

lim_{n->oo} a(k)/k = 2 (conjectured; cf. Examples).

Extensions

Edited by M. F. Hasler, Jul 10 2016

A326181 Numbers n for which sigma(sigma(n)) = 3*sigma(n).

Original entry on oeis.org

54, 56, 87, 95, 276, 308, 429, 446, 455, 501, 581, 611, 158928, 194928, 195072, 199950, 226352, 234608, 236432, 248325, 255678, 263504, 266192, 273050, 275415, 304575, 336903, 341162, 353675, 366575, 369425, 369843, 380463, 386313, 389463, 406565, 411725, 415925, 422303, 447587, 468743, 497333, 500993, 511829, 515267, 519557, 519677
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2019

Keywords

Comments

Any odd perfect numbers must occur in this sequence, as such numbers must be in the intersection of A000396 and A326051, that is, satisfy both sigma(n) = 2n and sigma(2n) = 6n = 3*2n, thus in combination they must satisfy sigma(sigma(n)) = 3*sigma(n). Note that odd perfect numbers should occur also in A019283.
If, as conjectured, A005820 has 6 terms, then this sequence is finite and has 756 terms. - Giovanni Resta, Jun 17 2019

Crossrefs

Subsequence of A066961.

Programs

  • PARI
    isA326181(n) = { my(s=sigma(n)); (sigma(s)==3*s); };

A354100 The 3-adic valuation of sigma, sum of divisors function.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 3, 1, 0, 0, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 0, 3, 1, 2, 1, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 2, 2, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 2, 2, 2, 0, 1, 0, 2, 1, 2, 0, 2, 1, 0, 1, 3, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Cf. A329963 (positions of zeros), A087943 (of terms > 0).
Cf. also A336937, A354099.

Programs

  • Mathematica
    a[n_] := IntegerExponent[DivisorSigma[1, n], 3]; Array[a, 100] (* Amiram Eldar, May 18 2023 *)
  • PARI
    A354100(n) = valuation(sigma(n),3);
    
  • PARI
    A354100(n) = { my(f=factor(n)); sum(k=1,#f~,valuation(((f[k,1]^(f[k,2]+1))-1)/(f[k,1]-1), 3)); }; \\ Demonstrates the additivity

Formula

a(n) = A007949(A000203(n)).
Additive with a(p^e) = A007949((p^(e+1)-1)/(p-1)).

A382125 G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Original entry on oeis.org

1, 3, 15, 52, 180, 555, 1696, 4809, 13410, 35844, 93771, 238305, 594403, 1449441, 3476607, 8190824, 19015548, 43492230, 98197506, 218885763, 482337864, 1051051262, 2266904481, 4840955055, 10242621395, 21479302368, 44666897613, 92139573135, 188617118541, 383280793962, 773395096907
Offset: 0

Views

Author

Paul D. Hanna, Apr 06 2025

Keywords

Comments

Compare with g.f. for partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
Equals the self-convolution cube of A382124.
Conjectures: a(3*n) == A382124(n) (mod 3) for n >= 0; a(3*n+1) == 0 (mod 3) and a(3*n+2) == 0 (mod 3) for n >= 0.

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 52*x^3 + 180*x^4 + 555*x^5 + 1696*x^6 + 4809*x^7 + 13410*x^8 + 35844*x^9 + 93771*x^10 + ...
where
A(x) = exp(3*x + 21*x^2/2 + 48*x^3/3 + 105*x^4/4 + 108*x^5/5 + 336*x^6/6 + 192*x^7/7 + 465*x^8/8 + 507*x^9/9 + 756*x^10/10 + ... + sigma(n)*sigma(2*n)*x^n/n + ...).
RELATED SERIES.
A(x)^(1/3) = 1 + x + 4*x^2 + 9*x^3 + 22*x^4 + 44*x^5 + 105*x^6 + 200*x^7 + 425*x^8 + 825*x^9 + 1634*x^10 + ... + A382124(n)*x^n + ...
		

Crossrefs

Cf. A382124, A382123, A156302, A347108, A000203 (sigma), A000041 (partitions).

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Exp[Sum[DivisorSigma[1,n]DivisorSigma[1,2*n] * x^n/n ,{n,nmax}]],{x,0,nmax}],x] (* Stefano Spezia, Apr 06 2025 *)
  • PARI
    {a(n) = my(A = exp( sum(m=1,n, sigma(m)*sigma(2*m)*x^m/m ) +x*O(x^n) ));
    polcoef(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ).
(2) A(x) = exp( Sum_{n>=1} Sum_{k>=1} sigma(2*n*k) * x^(n*k) / n ).
(3) a(n) = (1/n) * Sum_{k=1..n} sigma(k)*sigma(2*k) * a(n-k) for n>0, with a(0) = 1.
Showing 1-10 of 17 results. Next