cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005820 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.

Original entry on oeis.org

120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1

Views

Author

Keywords

Comments

These six terms are believed to comprise all 3-perfect numbers. - cf. the MathWorld link. - Daniel Forgues, May 11 2010
If there exists an odd perfect number m (a famous open problem) then 2m would be 3-perfect, since sigma(2m) = sigma(2)*sigma(m) = 3*2m. - Jens Kruse Andersen, Jul 30 2014
According to the previous comment from Jens Kruse Andersen, proving that this sequence is complete would imply that there are no odd perfect numbers. - Farideh Firoozbakht, Sep 09 2014
If 2 were prepended to this sequence, then it would be the sequence of integers k such that numerator(sigma(k)/k) = A017665(k) = 3. - Michel Marcus, Nov 22 2015
From Antti Karttunen, Mar 20 2021, Sep 18 2021, (Start):
Obviously, any odd triperfect numbers k, if they exist, have to be squares for the condition sigma(k) = 3*k to hold, as sigma(k) is odd only for k square or twice a square. The square root would then need to be a term of A097023, because in that case sigma(2*k) = 9*k. (See illustration in A347391).
Conversely to Jens Kruse Andersen's comment above, any 3-perfect number of the form 4k+2 would be twice an odd perfect number. See comment in A347870.
(End)

Examples

			120 = 2^3*3*5;  sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
  • David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.

Crossrefs

Subsequence of the following sequences: A007691, A069085, A153501, A216780, A292365, A336458, A336461, A336745, and if there are no odd terms, then also of A334410.
Positions of 120's in A094759, 119's in A326200.

Programs

Formula

a(n) = 2*A326051(n). [provided no odd triperfect numbers exist] - Antti Karttunen, Jun 13 2019

Extensions

Wells gives the 6th term as 31001180160, but this is an error.
Edited by Farideh Firoozbakht and N. J. A. Sloane, Sep 09 2014 to remove some incorrect statements.

A019283 Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,6)-perfect numbers.

Original entry on oeis.org

42, 84, 160, 336, 1344, 86016, 550095, 1376256, 5505024, 22548578304
Offset: 1

Views

Author

Keywords

Comments

If 2^p-1 is a Mersenne prime then m = 21*2^(p-1) is in the sequence. Because sigma(sigma(m)) = sigma(sigma(21*2^(p-1))) = sigma(32*(2^p-1)) = 63*2^p = 6*(21*2^(p-1)) = 6*m. So 21*(A000668+1)/2 is a subsequence of this sequence. This is the subsequence 42, 84, 336, 1344, 86016, 1376256, 5505024, 22548578304, 24211351596743786496, ... - Farideh Firoozbakht, Dec 05 2005
See also the Cohen-te Riele links under A019276.
No other terms < 5 * 10^11. - Jud McCranie, Feb 08 2012
Any odd perfect numbers must occur in this sequence, as such numbers must be in the intersection of A000396 and A326051, that is, satisfy both sigma(n) = 2n and sigma(2n) = 6n, thus in combination they must satisfy sigma(sigma(n)) = 6n. Note that any odd perfect number should occur also in A326181. - Antti Karttunen, Jun 16 2019
a(11) > 4*10^12. - Giovanni Resta, Feb 26 2020

Crossrefs

Programs

  • Mathematica
    Do[If[DivisorSigma[1, DivisorSigma[1, n]]==6n, Print[n]], {n, 6000000}] (* Farideh Firoozbakht, Dec 05 2005 *)
  • PARI
    isok(n) = sigma(sigma(n))/n  == 6; \\ Michel Marcus, May 12 2016

Extensions

a(10) by Jud McCranie, Feb 08 2012

A332457 Numbers k such that sigma(k) == 2 modulo 8 and sigma(sigma(k)) == 6 modulo 8.

Original entry on oeis.org

193, 202, 673, 1153, 1201, 1354, 1601, 1642, 1873, 2017, 2088, 2593, 2682, 2753, 3049, 3112, 3217, 3313, 3328, 3754, 3898, 4041, 4084, 4177, 4273, 4337, 4426, 4561, 5193, 5233, 5386, 5449, 5482, 5849, 6337, 6353, 6826, 6922, 7002, 7057, 7114, 7393, 7402, 7537, 7793, 8081, 8104, 8353, 8564, 8698, 8872, 9049, 9377, 9601
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2020

Keywords

Comments

That the first part of the condition is necessary for odd perfect numbers, see A332228, that the second part of the condition is necessary, see A019283 and A326181.

Crossrefs

Intersection of A332226 and A332456.
Cf. A332458 (a subsequence of non-primepower odd terms).

Programs

  • Magma
    [k:k in [1..9700]| DivisorSigma(1,k) mod 8 eq 2 and DivisorSigma(1, DivisorSigma(1,k)) mod 8 eq 6]; // Marius A. Burtea, Feb 15 2020
  • Mathematica
    Select[Range[10000],With[{c=DivisorSigma[1,#]},Mod[c,8]==2&&Mod[DivisorSigma[1,c],8]==6&]]  (* Harvey P. Dale, Nov 23 2024 *)
  • PARI
    isA332457(n) = { my(s=sigma(n)); ((2==(s%8)) && (6==(sigma(s)%8))); };
    

A247111 Integers k such that sigma(sigma(k) - k) = 2*k, where sigma is the sum of divisors, A000203.

Original entry on oeis.org

6, 28, 36, 496, 8128, 33550336, 8589869056
Offset: 1

Views

Author

Michel Marcus, Nov 19 2014

Keywords

Comments

That is, integers k such that A072869(k) = 2*k.
All perfect numbers (A000396) belong to this sequence.
Is there another term like 36 that is not perfect?
a(8) > 10^11. - Hiroaki Yamanouchi, Sep 11 2015
a(8) <= 137438691328. - David A. Corneth, Jun 04 2021

Examples

			For k=36, sigma(sigma(36)-36) = sigma(91-36) = sigma(55) = 72, hence 36 is in the sequence.
		

Crossrefs

Cf. A000203 (sigma(n)), A000396 (perfect numbers), A001065 (sigma(n)-n), A072869 (sigma(sigma(n)-n)).
Cf. also A019283, A326181, A342922.

Programs

  • Mathematica
    Select[Range[1,10000],DivisorSigma[1,DivisorSigma[1,#]-#]==2*#&] (* Julien Kluge, Sep 20 2016 *)
  • PARI
    isok(n) = (sigma(sigma(n) - n) == 2*n);

Extensions

a(7) from Michel Marcus, Nov 22 2014
Showing 1-4 of 4 results.