cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A300658 Numbers m that divide sigma(sigma(m) - m) where sigma is the sum of divisors function (A000203).

Original entry on oeis.org

4, 6, 8, 28, 32, 36, 78, 84, 128, 168, 252, 496, 504, 532, 756, 1488, 2808, 3720, 4464, 5928, 8128, 8192, 13392, 24384, 61236, 73152, 78120, 131072, 183708, 217728, 219456, 425880, 458640, 524288, 1084752, 1834560, 2204280, 3254256, 6120432, 6386688, 11007360
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2018

Keywords

Comments

Numbers m that divide A072869(m).
Numbers m such that sigma(sigma(m)-m) = k*m for k = 1 - 5:
k = 1: 4, 8, 32, 128, 8192, 131072, 524288, 2147483648, ... (A072868),
k = 2: 6, 28, 36, 496, 8128, 33550336, 8589869056, ... (A247111),
k = 3: 78, 532, ...,
k = 4: 84, 252, 756, 1488, 4464, 13392, 24384, 61236, 73152, ...,
k = 5: 168, 2808, 5928, 6120432, ...
Perfect numbers (A000396) are terms.
Corresponding values of (sigma(sigma(m) - m)) / m for numbers m from this sequence: 1, 2, 1, 2, 1, 2, 3, 4, 1, 5, 4, 2, 6, 3, 4, 4, 5, 7, 4, 5, 2, 1, 4, 4, 4, 4, 10, 1, 4, 8, 4, 12, 10, 1, 4, 11, 9, ...
Sequence of the smallest numbers k such that sigma(sigma(k) - k) = n*k for n >= 1: 4, 6, 78, 84, 168, 504, 3720, 217728, 2204280, 78120, 1834560, 425880, ...

Examples

			6 is a term because sigma(sigma(6) - 6) / 6 = 12 / 6 = 2 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..1000000] | SumOfDivisors(SumOfDivisors(n)- n) mod n eq 0];
    
  • PARI
    isok(n) = (n!=1) && !(sigma(sigma(n)-n) % n); \\ Michel Marcus, Mar 25 2018
Showing 1-1 of 1 results.