cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A074629 Duplicate of A067051.

Original entry on oeis.org

2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Comments

Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015

Examples

			n=32: sigma(32) = 63 = 6*10 + 3.
		

Crossrefs

Appears to be the same sequence as A067051. - Ralf Stephan, Aug 18 2004

Programs

  • Magma
    [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
  • Mathematica
    Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    isok(n) = (sigma(n) % 6) == 3; \\ Michel Marcus, Dec 26 2013
    

Formula

A000203(n) mod 6 = 3.
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020

A084301 a(n) = sigma(n) mod 6.

Original entry on oeis.org

1, 3, 4, 1, 0, 0, 2, 3, 1, 0, 0, 4, 2, 0, 0, 1, 0, 3, 2, 0, 2, 0, 0, 0, 1, 0, 4, 2, 0, 0, 2, 3, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 4, 3, 3, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 3, 2, 0, 4, 2, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 3, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jun 02 2003

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).
Cf. A074627 (locations of 0), A074628 (locations of 2), A067051 (locations of 3), A074630 (locations of 4), A074384 (locations of 5).

Programs

Formula

a(n) = A010875(A000203(n)). - Antti Karttunen, Nov 07 2017

A074627 Numbers n such that sigma(n) is divisible by 6.

Original entry on oeis.org

5, 6, 10, 11, 14, 15, 17, 20, 22, 23, 24, 26, 29, 30, 33, 34, 35, 38, 40, 41, 42, 44, 45, 46, 47, 51, 53, 54, 55, 56, 58, 59, 60, 62, 65, 66, 68, 69, 70, 71, 74, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89, 90, 92, 94, 95, 96, 99, 101, 102, 104, 105, 106, 107, 110, 113, 114, 115
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Comments

n=10: sigma(10) = 1+2+5+10 = 18 = 3*6.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 120, Divisible[DivisorSigma[1, #], 6] &] (* Michael De Vlieger, Feb 25 2017 *)
  • PARI
    isok(n) = !(sigma(n) % 6); \\ Michel Marcus, Dec 17 2013

Formula

A000203(n) modulo 6 = 0.
{n: A084301(n) = 0 }. - R. J. Mathar, May 19 2020
A087943 INTERSECT A028983. - R. J. Mathar, May 19 2020

A074630 Numbers k such that sigma(k) == 4 mod 6.

Original entry on oeis.org

3, 12, 27, 48, 75, 91, 108, 133, 192, 217, 243, 247, 259, 273, 300, 301, 343, 363, 364, 399, 403, 427, 432, 469, 481, 511, 532, 553, 559, 589, 651, 675, 679, 703, 721, 741, 763, 768, 777, 793, 817, 819, 867, 868, 871, 889, 903, 949, 972, 973, 988, 1027, 1029
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Examples

			k=48 is a term because sigma(48) = 1+2+3+4+6+8+12+16+24+48 = 124 = 6*20 + 4. [corrected by _Harvey P. Dale_, Jan 17 2013]
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100],Mod[DivisorSigma[1,#],6]==4&] (* Harvey P. Dale, Jan 17 2013 *)

Formula

Mod(A000203(n), 6) = 4.
{n: A084301(n) = 4}. - R. J. Mathar, May 19 2020

A049605 Smallest k>1 such that k divides sigma(k*n).

Original entry on oeis.org

6, 3, 2, 6, 2, 2, 2, 3, 6, 2, 2, 2, 2, 2, 2, 6, 2, 3, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 6, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2002

Keywords

Comments

a(n) = 2, 3 or 6. For any m, a(A028983(m)) = 2. If a(m)=6 then m is a square but if m is a square a(m) is not necessarily 6, first example is 7: a(7^2)=3 (cf. A072864).

Crossrefs

Cf. A028983 (locations of 2), A067051 (locations of 3), A072862 (locations of 6).

Programs

  • Maple
    A049605 := proc(n)
        for k from 2 do
            if modp(numtheory[sigma](k*n),k) = 0 then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    sk[n_]:=Module[{k=2},While[!Divisible[DivisorSigma[1,k*n],k],k++];k]; sk /@ Range[110] (* Harvey P. Dale, Jan 04 2015 *)
  • PARI
    a(n) = {k = 2; while(sigma(k*n) % k, k++); k ;} \\ Michel Marcus, Nov 21 2013

A074216 Squares satisfying sigma(n)==0 (mod 3).

Original entry on oeis.org

49, 169, 196, 361, 441, 676, 784, 961, 1225, 1369, 1444, 1521, 1764, 1849, 2704, 3136, 3249, 3721, 3844, 3969, 4225, 4489, 4900, 5329, 5476, 5776, 5929, 6084, 6241, 7056, 7396, 8281, 8649, 9025, 9409, 10609, 10816, 11025, 11881, 12321, 12544
Offset: 1

Views

Author

Benoit Cloitre, Sep 17 2002

Keywords

Comments

Seems to contain all numbers of form k^2*p^2 where p are primes in A002476, k is not congruent to p and >=1.
Squares in A067051. - Michel Marcus, Dec 26 2013

Crossrefs

Programs

  • Magma
    [n: n in [1..14161]|IsSquare(n) and DivisorSigma(1,n) mod 3 eq 0 ]; // Marius A. Burtea, Aug 17 2019
  • Maple
    with(numtheory); A074216:=n->`if`(1-ceil(sigma(n^2)/3)+floor(sigma(n^2)/3)=1,n^2,NULL); seq(A074216(n), n=1..200); # Wesley Ivan Hurt, Dec 06 2013
  • Mathematica
    Select[Range[150]^2,Divisible[DivisorSigma[1,#],3]&] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    isok(n) = issquare(n) && !(sigma(n) % 3); \\ Michel Marcus, Aug 17 2019
    

Formula

Conjecture: a(n) = A072864(n)^2. - R. J. Mathar, May 19 2020

A097022 a(n) = (sigma(2n^2)-3)/6.

Original entry on oeis.org

0, 2, 6, 10, 15, 32, 28, 42, 60, 77, 66, 136, 91, 142, 201, 170, 153, 302, 190, 325, 370, 332, 276, 552, 390, 457, 546, 598, 435, 1007, 496, 682, 864, 767, 883, 1270, 703, 952, 1189, 1317, 861, 1852, 946, 1396, 1875, 1382, 1128, 2216, 1400, 1952, 1995, 1921
Offset: 1

Views

Author

Labos Elemer, Aug 24 2004

Keywords

Comments

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[1,2n^2]-3)/6,{n,60}] (* Harvey P. Dale, Sep 12 2022 *)
  • PARI
    a(n) = (sigma(2*n^2) - 3)/6; \\ Michel Marcus, Dec 20 2013

Formula

a(n) = (A065765(n)-3)/6 = A000203(A001105(n) - 3)/6.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.243587... . - Amiram Eldar, Oct 28 2022

A332217 Numbers k for which the 2-adic valuation of sigma(k) is zero and its 3-adic valuation is 1 (so that sigma(k) is an odd multiple of 3, but not of 9).

Original entry on oeis.org

2, 8, 18, 49, 50, 72, 128, 162, 169, 196, 200, 242, 361, 441, 450, 512, 578, 648, 676, 784, 961, 968, 1058, 1152, 1225, 1250, 1369, 1444, 1458, 1521, 1682, 1764, 1800, 1849, 2178, 2312, 2704, 3136, 3200, 3249, 3362, 3721, 3844, 3969, 4050, 4225, 4232, 4418, 4489, 4608, 4802, 4900, 5000
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2020

Keywords

Crossrefs

Subsequence of A067051, which is a subsequence of A028982.
Cf. A332218 (a subsequence).

Programs

  • Mathematica
    Select[Range[5*10^3], IntegerExponent[DivisorSigma[1, #], {2, 3}] === {0, 1} &] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    isA332217(n) = ((sigma(n)%2)&&(valuation(sigma(n),3)==1));

Formula

{n: A000035(A000203(n))*A007949(A000203(n))==1}.

A332218 Numbers k such that A332221(k) = A156552(sigma(k)) is 2*{an odd square}.

Original entry on oeis.org

2, 162, 441, 2704, 4225, 275194921
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2020

Keywords

Comments

Any even term of A332216 must occur also in this sequence.

Examples

			  a(n)              -> sigma(a(n))              -> A156552(sigma(a(n)))
     2 = 2^1 * 1^2  ->    3 = 3^1               ->      2 = 2^1 * 1^1,
   162 = 2^1 * 3^4  ->  363 = 3^1 * 11^2        ->     98 = 2^1 * 7^2,
   441 = 3^2 * 7^2  ->  741 = 3^1 * 13^1 * 19^1 ->    578 = 2^1 * 17^2,
  2704 = 2^4 * 13^2 -> 5673 = 3^1 * 31^1 * 61^1 -> 526338 = 2^1 * 3^6 * 19^2,
  4225 = 5^2 * 13^2 -> 5673 = 3^1 * 31^1 * 61^1 -> 526338 = 2^1 * 3^6 * 19^2,
and
275194921 = 53^2 * 313^2 -> 281384229 = 3^1 * 7^1 * 181^2 * 409^1 -> 9671406556943421676716050 = 2^1 * 5^2 * 7^2 * 62829235873^2.
		

Crossrefs

Subsequence of A332217A067051A028982.

Programs

  • Mathematica
    Select[Range@ 5000, And[IntegerQ[#], OddQ[#]] &@ Sqrt[#/2] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ DivisorSigma[1, #]]] &] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    \\ Needs also code from A156552:
    istosq(n) = ((1==valuation(n,2))&&issquare(n/2));
    for(n=1,2^25,if(istosq(A156552(sigma(n*n))),print1(n*n,", ")); if(istosq(A156552(sigma(2*n*n))),print1(2*n*n,", ")));
Showing 1-9 of 9 results.