cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A084301 a(n) = sigma(n) mod 6.

Original entry on oeis.org

1, 3, 4, 1, 0, 0, 2, 3, 1, 0, 0, 4, 2, 0, 0, 1, 0, 3, 2, 0, 2, 0, 0, 0, 1, 0, 4, 2, 0, 0, 2, 3, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 4, 3, 3, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 3, 2, 0, 4, 2, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 3, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jun 02 2003

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).
Cf. A074627 (locations of 0), A074628 (locations of 2), A067051 (locations of 3), A074630 (locations of 4), A074384 (locations of 5).

Programs

Formula

a(n) = A010875(A000203(n)). - Antti Karttunen, Nov 07 2017

A337339 Denominator of (1+sigma(s)) / ((s+1)/2), where s is the square of n prime-shifted once (s = A003961(n)^2 = A003961(n^2)).

Original entry on oeis.org

1, 5, 13, 41, 25, 113, 61, 365, 313, 221, 85, 1013, 145, 109, 613, 3281, 181, 2813, 265, 1985, 1513, 761, 421, 9113, 1201, 1301, 7813, 377, 481, 5513, 685, 29525, 2113, 1625, 2965, 25313, 841, 2381, 3613, 17861, 925, 13613, 1105, 6845, 15313, 3785, 1405, 82013, 7321, 10805, 4513, 11705, 1741, 70313, 4141, 8821, 6613, 865
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Comments

All terms are members of A007310, because all terms of A337336 and A337337 are.
No 1's after the initial one at a(1) => No quasiperfect numbers. See comments in A336700 & A337342.
If any quasiperfect numbers qp exist, they must occur also in A325311.
Question: Is there any reliable lower bound for this sequence? See A337340, A337341.
Duplicate values are rare, but at least two cases exist: a(21) = a(74) = 1513 and a(253) = a(554) = 71065. - Antti Karttunen, Jan 03 2024

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337339(n) = { my(s=(A003961(n)^2),u=(s+1)/2); (u/gcd(1+sigma(s), u)); };
    \\ Or alternatively as:
    A337339(n) = { my(s=A003961(n^2)); denominator((1+sigma(s))/((s+1)/2)); };

Formula

a(n) = A337336(n) / A337337(n) = A048673(n^2) / gcd(A048673(n^2), A336844(n^2)).
a(n) = A337336(n) / gcd(A337336(n), 1+A003973(n^2)).

A067051 The smallest k>1 such that k divides sigma(k*n) is equal to 3.

Original entry on oeis.org

2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2002

Keywords

Comments

The smallest m>1 such that m divides sigma(m*n) is 2, 3 or 6.
Appears to be the same sequence as A074629. - Ralf Stephan, Aug 18 2004. [Proof: Mathar link]
Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013

Crossrefs

Subsequence of A087943.

Programs

  • Magma
    [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
  • Mathematica
    Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    isok(n) = (sigma(2*n) % 2) && !(sigma(3*n) % 3); \\ Michel Marcus, Dec 26 2013
    

Formula

{n: A000203(n) mod 6 = 3.} (Old definition of A074629) - Labos Elemer, Aug 26 2002
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015
{n: A049605(n) = 3}. - R. J. Mathar, May 19 2020
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020
A087943 INTERSECT A028982. - R. J. Mathar, May 30 2020

A074628 Numbers k such that sigma(k) == 2 mod 6.

Original entry on oeis.org

7, 13, 19, 21, 28, 31, 37, 39, 43, 52, 57, 61, 63, 67, 73, 76, 79, 84, 93, 97, 103, 109, 111, 112, 117, 124, 127, 129, 139, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 193, 199, 201, 208, 211, 219, 223, 228, 229, 237, 241, 244, 252
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Examples

			For k=39: sigma(39) = 1+3+13+39 = 56 = 6*9 + 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],Mod[DivisorSigma[1,#],6]==2&] (* Harvey P. Dale, Nov 14 2014 *)
  • PARI
    isok(n) = ((sigma(n) % 6) == 2); \\ Michel Marcus, Dec 19 2013

Formula

A000203(n) mod 6 = 2.
{n: A084301(n) = 2}. - R. J. Mathar, May 19 2020

A074630 Numbers k such that sigma(k) == 4 mod 6.

Original entry on oeis.org

3, 12, 27, 48, 75, 91, 108, 133, 192, 217, 243, 247, 259, 273, 300, 301, 343, 363, 364, 399, 403, 427, 432, 469, 481, 511, 532, 553, 559, 589, 651, 675, 679, 703, 721, 741, 763, 768, 777, 793, 817, 819, 867, 868, 871, 889, 903, 949, 972, 973, 988, 1027, 1029
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Examples

			k=48 is a term because sigma(48) = 1+2+3+4+6+8+12+16+24+48 = 124 = 6*20 + 4. [corrected by _Harvey P. Dale_, Jan 17 2013]
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100],Mod[DivisorSigma[1,#],6]==4&] (* Harvey P. Dale, Jan 17 2013 *)

Formula

Mod(A000203(n), 6) = 4.
{n: A084301(n) = 4}. - R. J. Mathar, May 19 2020

A074629 Duplicate of A067051.

Original entry on oeis.org

2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Comments

Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015

Examples

			n=32: sigma(32) = 63 = 6*10 + 3.
		

Crossrefs

Appears to be the same sequence as A067051. - Ralf Stephan, Aug 18 2004

Programs

  • Magma
    [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
  • Mathematica
    Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    isok(n) = (sigma(n) % 6) == 3; \\ Michel Marcus, Dec 26 2013
    

Formula

A000203(n) mod 6 = 3.
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020

A097022 a(n) = (sigma(2n^2)-3)/6.

Original entry on oeis.org

0, 2, 6, 10, 15, 32, 28, 42, 60, 77, 66, 136, 91, 142, 201, 170, 153, 302, 190, 325, 370, 332, 276, 552, 390, 457, 546, 598, 435, 1007, 496, 682, 864, 767, 883, 1270, 703, 952, 1189, 1317, 861, 1852, 946, 1396, 1875, 1382, 1128, 2216, 1400, 1952, 1995, 1921
Offset: 1

Views

Author

Labos Elemer, Aug 24 2004

Keywords

Comments

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[1,2n^2]-3)/6,{n,60}] (* Harvey P. Dale, Sep 12 2022 *)
  • PARI
    a(n) = (sigma(2*n^2) - 3)/6; \\ Michel Marcus, Dec 20 2013

Formula

a(n) = (A065765(n)-3)/6 = A000203(A001105(n) - 3)/6.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.243587... . - Amiram Eldar, Oct 28 2022

A097503 Numbers k such that A000203(k) = sigma(k) is not divisible by 6.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 12, 13, 16, 18, 19, 21, 25, 27, 28, 31, 32, 36, 37, 39, 43, 48, 49, 50, 52, 57, 61, 63, 64, 67, 72, 73, 75, 76, 79, 81, 84, 91, 93, 97, 98, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 128, 129, 133, 139, 144, 148, 151, 156, 157, 162, 163, 169
Offset: 1

Views

Author

Labos Elemer, Aug 23 2004

Keywords

Comments

Positions of nonzero terms in A084301. - Ivan Neretin, Jan 26 2017

Crossrefs

Complement of A074627.

Programs

  • Mathematica
    Select[Range[170], ! Divisible[DivisorSigma[1, #], 6] &] (* Ivan Neretin, Jan 26 2017 *)
  • PARI
    isok(n) = (sigma(n) % 6) != 0; \\ Michel Marcus, Jan 26 2017

Extensions

Definition corrected by Ivan Neretin, Jan 26 2017

A097016 a(n)=x is the first term in chain of consecutive integers, for all of which the value of sigma[x] is divisible by 6.

Original entry on oeis.org

5, 5, 22, 44, 85, 85, 230, 260, 352, 950, 950, 1172, 1172, 1172, 1172, 1172, 1172, 1172, 1172, 1901, 1901, 7249, 7249, 7249, 12932, 12932, 12932, 12932, 12932, 38852, 38852, 226324, 226324, 235372, 235372, 235372, 413974, 413974, 423485, 423485
Offset: 1

Views

Author

Labos Elemer, Aug 23 2004

Keywords

Comments

It appears that arbitrarily long chains exist.

Examples

			n=52: a(52)=1270685 means that all entries in {sigma[a(52)],...,sigma[1270685+52-1]} ={1666224,...,2520672} are divisible by 6.
		

Crossrefs

Programs

  • Mathematica
    With[{ds=Table[If[Divisible[DivisorSigma[1,n],6],1,0],{n,450000}]},Flatten[ Table[SequencePosition[ds,PadRight[{},n,1],1],{n,40}],1][[All,1]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2018 *)
Showing 1-9 of 9 results.