cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067051 The smallest k>1 such that k divides sigma(k*n) is equal to 3.

Original entry on oeis.org

2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2002

Keywords

Comments

The smallest m>1 such that m divides sigma(m*n) is 2, 3 or 6.
Appears to be the same sequence as A074629. - Ralf Stephan, Aug 18 2004. [Proof: Mathar link]
Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013

Crossrefs

Subsequence of A087943.

Programs

  • Magma
    [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
  • Mathematica
    Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    isok(n) = (sigma(2*n) % 2) && !(sigma(3*n) % 3); \\ Michel Marcus, Dec 26 2013
    

Formula

{n: A000203(n) mod 6 = 3.} (Old definition of A074629) - Labos Elemer, Aug 26 2002
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015
{n: A049605(n) = 3}. - R. J. Mathar, May 19 2020
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020
A087943 INTERSECT A028982. - R. J. Mathar, May 30 2020

A074628 Numbers k such that sigma(k) == 2 mod 6.

Original entry on oeis.org

7, 13, 19, 21, 28, 31, 37, 39, 43, 52, 57, 61, 63, 67, 73, 76, 79, 84, 93, 97, 103, 109, 111, 112, 117, 124, 127, 129, 139, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 193, 199, 201, 208, 211, 219, 223, 228, 229, 237, 241, 244, 252
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Examples

			For k=39: sigma(39) = 1+3+13+39 = 56 = 6*9 + 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],Mod[DivisorSigma[1,#],6]==2&] (* Harvey P. Dale, Nov 14 2014 *)
  • PARI
    isok(n) = ((sigma(n) % 6) == 2); \\ Michel Marcus, Dec 19 2013

Formula

A000203(n) mod 6 = 2.
{n: A084301(n) = 2}. - R. J. Mathar, May 19 2020

A097022 a(n) = (sigma(2n^2)-3)/6.

Original entry on oeis.org

0, 2, 6, 10, 15, 32, 28, 42, 60, 77, 66, 136, 91, 142, 201, 170, 153, 302, 190, 325, 370, 332, 276, 552, 390, 457, 546, 598, 435, 1007, 496, 682, 864, 767, 883, 1270, 703, 952, 1189, 1317, 861, 1852, 946, 1396, 1875, 1382, 1128, 2216, 1400, 1952, 1995, 1921
Offset: 1

Views

Author

Labos Elemer, Aug 24 2004

Keywords

Comments

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[1,2n^2]-3)/6,{n,60}] (* Harvey P. Dale, Sep 12 2022 *)
  • PARI
    a(n) = (sigma(2*n^2) - 3)/6; \\ Michel Marcus, Dec 20 2013

Formula

a(n) = (A065765(n)-3)/6 = A000203(A001105(n) - 3)/6.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*zeta(3)/Pi^2 = 0.243587... . - Amiram Eldar, Oct 28 2022
Showing 1-3 of 3 results.