cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A306476 Numbers k, with sigma(k) >= 3k and sigma(k) divisible by 3, that are not in A204830.

Original entry on oeis.org

10556208, 10578672, 10589904, 10612368, 10657296, 10690992, 10702224, 10747152, 10825776, 10859472, 10870704, 10881936, 10938096, 10949328, 10971792, 10983024, 11005488, 11039184, 11050416, 11095344, 11117808, 11196432, 11207664, 11252592, 11286288, 11319984
Offset: 1

Views

Author

Giovanni Resta, Feb 18 2019

Keywords

Comments

From an idea of Amiram Eldar. Analogous sequence to A171641. The divisors of the listed terms k cannot be arranged in three disjoint sets each of them adding to sigma(k)/3.

Crossrefs

A319186 Total number of three disjoint subsets of divisors of k, each of ones adding to sigma(k)/3, where k are the terms listed in A204830.

Original entry on oeis.org

1, 1, 5, 77, 53, 33, 14, 21, 21, 8, 1, 1940, 2, 8217, 230, 4894
Offset: 1

Views

Author

Paolo P. Lava, Dec 17 2018

Keywords

Examples

			a(1) = 1 because A204830(1) = 120, divisors of 120 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 and 1+2+3+4+5+6+8+10+12+15+24+30 = 20+40+60 = 120 = sigma(120)/3. Of course also 1+2+3+5+8+12+15+20+24+30 = 4+6+10+40+60 = 120 = sigma(120)/3 but these three subsets share {120} with the previous ones and therefore they are not disjoint.
a(13) = 2 because A204830(13) = 780, divisors of 780 are 1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390, 780: 1+3+52+78+260+390 = 2+5+6+10+12+13+15+20+26+30+39+60+65+130+156+195 = 4+780 = sigma(780)/3 and 5+6+10+12+13+15+26+39+52+60+65+130+156+195 = 2+4+20+30+78+260+390 = 1+3+780 = sigma(780)/3.
a(3) = 5 because A204830(3) = 240, divisors of 240 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240 and sigma(240)/3 = 248: it is easy to see that the total number of three disjoint subset is 5 because the only subsets containing 240 that sum to 248 are {1,2,5,240}, {1,3,4,240}, {2,6,240}, {3,5,240} and {8,240}.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combstruct): P:=proc(q,h) local a,b,c,d,f,k,n,r;
    for n from 1 to q do a:=sigma(n); b:=op(divisors(n));
    if a mod h=0 and a>=h*n then k:=0; c:=1/h*a-n;
    r:=select(m->m<=c,[b]); f:=iterstructs(Combination(r));
    while not finished(f) do if c=add(d,d=nextstruct(f)) then k:=k+1; fi; od; lprint(n,k); fi; od; end: P(10^4,3);

A083207 Zumkeller or integer-perfect numbers: numbers n whose divisors can be partitioned into two disjoint sets with equal sum.

Original entry on oeis.org

6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

The 229026 Zumkeller numbers less than 10^6 have a maximum difference of 12. This leads to the conjecture that any 12 consecutive numbers include at least one Zumkeller number. There are 1989 odd Zumkeller numbers less than 10^6; they are exactly the odd abundant numbers that have even abundance, A174865. - T. D. Noe, Mar 31 2010
For k >= 0, numbers of the form 18k + 6 and 18k + 12 are terms (see Remark 2.3. in Somu et al., 2023). Corollary: The maximum difference between any two consecutive terms is at most 12. - Ivan N. Ianakiev, Jan 02 2024
All 205283 odd abundant numbers less than 10^8 that have even abundance (see A174865) are Zumkeller numbers. - T. D. Noe, Nov 14 2010
Except for 1 and 2, all primorials (A002110) are Zumkeller numbers (follows from Fact 6 in the Rao/Peng paper). - Ivan N. Ianakiev, Mar 23 2016
Supersequence of A111592 (follows from Fact 3 in the Rao/Peng paper). - Ivan N. Ianakiev, Mar 20 2017
Conjecture: Any 4 consecutive terms include at least one number k such that sigma(k)/2 is also a Zumkeller number (verified for the first 10^5 Zumkeller numbers). - Ivan N. Ianakiev, Apr 03 2017
LeVan studied these numbers using the equivalent definition of numbers n such that n = Sum_{d|n, dA180332) "minimal integer-perfect numbers". - Amiram Eldar, Dec 20 2018
The numbers 3 * 2^k for k > 0 are all Zumkeller numbers: half of one such partition is {3*2^k, 3*2^(k-2), ...}, replacing 3 with 2 if it appears. With this and the lemma that the product of a Zumkeller number and a number coprime to it is again a Zumkeller number (see A179527), we have that all numbers divisible by 6 but not 9 (or numbers congruent to 6 or 12 modulo 18) are Zumkeller numbers, proving that the difference between consecutive Zumkeller numbers is at most 12. - Charlie Neder, Jan 15 2019
Improvements on the previous comment: 1) For every integer q > 0, every odd integer r > 0 and every integer s > 0 relatively prime to 6, the integer 2^q*3^r*s is a Zumkeller number, and therefore 2) there exist Zumkeller numbers divisible by 9 (such as 54, 90, 108, 126, etc.). - Ivan N. Ianakiev, Jan 16 2020
Conjecture: If d > 1, d|k and tau(d)*sigma(d) = k, then k is a Zumkeller number (cf. A331668). - Ivan N. Ianakiev, Apr 24 2020
This sequence contains A378541, the intersection of the practical numbers (A005153) with numbers with even sum of divisors (A028983). - David A. Corneth, Nov 03 2024
Sequence gives the positions of even terms in A119347, and correspondingly, of odd terms in A308605. - Antti Karttunen, Nov 29 2024
If s = sigma(m) is odd and p > s then m*p is not in the sequence. - David A. Corneth, Dec 07 2024

Examples

			Given n = 48, we can partition the divisors thus: 1 + 3 + 4 + 6 + 8 + 16 + 24 = 2 + 12 + 48, therefore 48 is a term (A083206(48) = 5).
From _David A. Corneth_, Dec 04 2024: (Start)
30 is in the sequence. sigma(30) = 72. So we look for distinct divisors of 30 that sum to 72/2 = 36. That set or its complement contains 30. The other divisors in that set containing 30 sum to 36 - 30 = 6. So we look for some distinct proper divisors of 30 that sum to 6. That is from the divisors of {1, 2, 3, 5, 6, 10, 15}. It turns out that both 1+2+3 and 6 satisfy this condition. So 36 is in the sequence.
25 is not in the sequence as sigma(25) = 31 which is odd so the sum of two equal integers cannot be the sum of divisors of 25.
33 is not in the sequence as sigma(33) = 48 < 2*33. So is impossible to have a partition of the set of divisors into two disjoint set the sum of each of them sums to 48/2 = 24 as one of them contains 33 > 24 and any other divisors are nonnegative. (End)
		

References

  • Marijo O. LeVan, Integer-perfect numbers, Journal of Natural Sciences and Mathematics, Vol. 27, No. 2 (1987), pp. 33-50.
  • Marijo O. LeVan, On the order of nu(n), Journal of Natural Sciences and Mathematics, Vol. 28, No. 1 (1988), pp. 165-173.
  • J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 1.10, pp. 53-54.

Crossrefs

Positions of nonzero terms in A083206, positions of 0's in A103977 and in A378600.
Positions of even terms in A119347, of odd terms in A308605.
Complement of A083210.
Subsequence of A023196 and of A028983.
Union of A353061 and A378541.
Conjectured subsequences: A007691, A331668 (after their initial 1's), A351548 (apart from 0-terms).
Cf. A174865 (Odd abundant numbers whose abundance is even).
Cf. A204830, A204831 (equal sums of 3 or 4 disjoint subsets).
Cf. A000203, A005101, A005153 (practical numbers), A005835, A027750, A048055, A083206, A083208, A083211, A171641, A175592, A179527 (characteristic function), A221054.

Programs

  • Haskell
    a083207 n = a083207_list !! (n-1)
    a083207_list = filter (z 0 0 . a027750_row) $ [1..] where
       z u v []     = u == v
       z u v (p:ps) = z (u + p) v ps || z u (v + p) ps
    -- Reinhard Zumkeller, Apr 18 2013
    
  • Maple
    with(numtheory): with(combstruct):
    is_A083207 := proc(n) local S, R, Found, Comb, a, s; s := sigma(n);
    if not(modp(s, 2) = 0 and n * 2 <= s) then return false fi;
    S := s / 2 - n; R := select(m -> m <= S, divisors(n)); Found := false;
    Comb := iterstructs(Combination(R)):
    while not finished(Comb) and not Found do
       Found := add(a, a = nextstruct(Comb)) = S
    od; Found end:
    A083207_list := upto -> select(is_A083207, [$1..upto]):
    A083207_list(272); # Peter Luschny, Dec 14 2009, updated Aug 15 2014
  • Mathematica
    ZumkellerQ[n_] := Module[{d=Divisors[n], t, ds, x}, ds = Plus@@d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[1000], ZumkellerQ] (* T. D. Noe, Mar 31 2010 *)
    znQ[n_]:=Length[Select[{#,Complement[Divisors[n],#]}&/@Most[Rest[ Subsets[ Divisors[ n]]]],Total[#[[1]]]==Total[#[[2]]]&]]>0; Select[Range[300],znQ] (* Harvey P. Dale, Dec 26 2022 *)
  • PARI
    part(n,v)=if(n<1, return(n==0)); forstep(i=#v,2,-1,if(part(n-v[i],v[1..i-1]), return(1))); n==v[1]
    is(n)=my(d=divisors(n),s=sum(i=1,#d,d[i])); s%2==0 && part(s/2-n,d[1..#d-1]) \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    \\ See Corneth link
    
  • Python
    from sympy import divisors
    from sympy.combinatorics.subsets import Subset
    for n in range(1,10**3):
        d = divisors(n)
        s = sum(d)
        if not s % 2 and max(d) <= s/2:
            for x in range(1,2**len(d)):
                if sum(Subset.unrank_binary(x,d).subset) == s/2:
                    print(n,end=', ')
                    break
    # Chai Wah Wu, Aug 13 2014
    
  • Python
    from sympy import divisors
    import numpy as np
    A083207 = []
    for n in range(2,10**3):
        d = divisors(n)
        s = sum(d)
        if not s % 2 and 2*n <= s:
            d.remove(n)
            s2, ld = int(s/2-n), len(d)
            z = np.zeros((ld+1,s2+1),dtype=int)
            for i in range(1,ld+1):
                y = min(d[i-1],s2+1)
                z[i,range(y)] = z[i-1,range(y)]
                z[i,range(y,s2+1)] = np.maximum(z[i-1,range(y,s2+1)],z[i-1,range(0,s2+1-y)]+y)
                if z[i,s2] == s2:
                    A083207.append(n)
                    break
    # Chai Wah Wu, Aug 19 2014
    
  • Sage
    def is_Zumkeller(n):
        s = sigma(n)
        if not (2.divides(s) and n*2 <= s): return False
        S = s // 2 - n
        R = (m for m in divisors(n) if m <= S)
        return any(sum(c) == S for c in Combinations(R))
    A083207_list = lambda lim: [n for n in (1..lim) if is_Zumkeller(n)]
    print(A083207_list(272)) # Peter Luschny, Sep 03 2018

Formula

A083206(a(n)) > 0.
A083208(n) = A083206(a(n)).
A179529(a(n)) = 1. - Reinhard Zumkeller, Jul 19 2010

Extensions

Name improved by T. D. Noe, Mar 31 2010
Name "Zumkeller numbers" added by N. J. A. Sloane, Jul 08 2010

A211223 Numbers k for which sigma(k) = sigma(x) + sigma(y), where k = x + y.

Original entry on oeis.org

3, 8, 9, 10, 15, 20, 21, 30, 32, 33, 39, 40, 49, 51, 55, 56, 57, 62, 63, 69, 70, 75, 85, 87, 88, 90, 92, 93, 94, 96, 99, 104, 105, 108, 110, 111, 114, 116, 117, 123, 125, 126, 128, 129, 130, 134, 135, 136, 140, 141, 145, 147, 150, 152, 153, 155, 158, 159, 160
Offset: 1

Views

Author

Paolo P. Lava, Apr 27 2012

Keywords

Comments

A211225(a(n)) > 0. - Reinhard Zumkeller, Jan 06 2013

Examples

			sigma(49) = sigma(8) + sigma(41) that is 57 = 15 + 42.
sigma(93) = sigma(31) + sigma(62) that is 128 = 32 + 96.
In more than one way: sigma(117) = sigma(41) + sigma(76) = sigma(52) + sigma(65) = sigma(56) + sigma(61) that is 182 = 42 + 140 = 98 + 84 = 120 + 62.
		

Crossrefs

Programs

  • Haskell
    a211223 n = a211223_list !! (n-1)
    a211223_list = map (+ 1) $ findIndices (> 0) a211225_list
    -- Reinhard Zumkeller, Jan 06 2013
  • Maple
    with(numtheory);
    A211223:=proc(q)
    local i,n;
    for n from 1 to q do
      for i from 1 to trunc(n/2) do
        if sigma(i)+sigma(n-i)=sigma(n) then print(n); break; fi;
    od; od; end:
    A211223(10000);
  • Mathematica
    sigmaPartitionQ[n_] := With[{s = DivisorSigma[1, n], ip = IntegerPartitions[ n, {2}]}, MemberQ[ip, {x_, y_} /; s == DivisorSigma[ 1, x] + DivisorSigma[ 1, y]]]; Select[Range[160], sigmaPartitionQ] (* Jean-François Alcover, Aug 19 2013 *)
  • PARI
    is(n)=my(t=sigma(n));for(i=1,n\2,if(sigma(i)+sigma(n-i)==t, return(1))) \\ Charles R Greathouse IV, May 04 2012
    

A211225 Number of ways to represent sigma(n) as sigma(x) + sigma(y) where x+y = n.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2
Offset: 1

Views

Author

Paolo P. Lava, May 07 2012

Keywords

Comments

From an idea of Charles R Greathouse IV.
a(A211223(n)) > 0. - Reinhard Zumkeller, Jan 06 2013

Examples

			a(3)=1 because sigma(3)=sigma(1)+sigma(2)=4;
a(32)=2 because sigma(32)=sigma(4)+sigma(28)=sigma(14)+sigma(18)=63;
a(117)=3 because sigma(117)=sigma(41)+sigma(76)=sigma(52)+sigma(65)=sigma(56)+sigma(61)=182; etc.
		

Crossrefs

Programs

  • Haskell
    a211225 n = length $ filter (== a000203 n) $ zipWith (+) us' vs where
       (us,vs@(v:_)) = splitAt (fromInteger $ (n - 1) `div` 2) a000203_list
       us' = if even n then v : reverse us else reverse us
    -- Reinhard Zumkeller, Jan 06 2013
  • Maple
    with(numtheory);
    A211225:=proc(q)
    local b,i,n;
    for n from 1 to q do
      b:=0;
      for i from 1 to trunc(n/2) do
        if sigma(i)+sigma(n-i)=sigma(n) then b:=b+1; fi;
      od;
      print(b)
    od; end:
    A211225(1000);
  • Mathematica
    a[n_] := With[{s = DivisorSigma[1, n]}, Sum[Boole[s == DivisorSigma[1, x] + DivisorSigma[1, n-x]], {x, 1, Quotient[n, 2]}]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 04 2023 *)
  • PARI
    a(n)=my(t=sigma(n)); sum(i=1, n\2, sigma(i)+sigma(n-i)==t) \\ Charles R Greathouse IV, May 07 2012
    

A204831 Numbers n whose divisors can be partitioned into four disjoint sets whose sums are all sigma(n)/4.

Original entry on oeis.org

27720, 30240, 32760, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 143640, 151200, 163800, 166320, 171360, 180180, 181440, 184800, 191520
Offset: 1

Views

Author

Jaroslav Krizek, Jan 22 2012

Keywords

Comments

Subsequence of A023198 (numbers n such that sigma(n) >= 4n).

Examples

			Number 27720 is in the sequence because sigma(27720)/4 = 28080 = 360 + 27720 = 20 + 60 + 280 + 2310 + 4620 + 6930 + 13860 = 9 + 30 + 420 + 1540 + 1980 + 2772 + 3080 + 3465 + 5544 + 9240 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 10 + 11 + 12 + 14 + 15 + 18 + 21 + 22 + 24 + 28 + 33 + 35 + 36 + 40 + 42 + 44 + 45 + 55 + 56 + 63 + 66 + 70+ 72 + 77 + 84 + 88 + 90 + 99 + 105 + 110 + 120 + 126 + 132 + 140 + 154 + 165 + 168 + 180 + 198 + 210 + 220 + 231 + 252 + 264+ 308 + 315 + 330 + 385 + 396 + 440 + 462 + 495 + 504 + 616 + 630 + 660 + 693 + 770 + 792 + 840 + 924 + 990 + 1155 + 1260 + 1320 + 1386 + 1848 + 2520 + 3960 (summands are all divisors of 27720).
		

Crossrefs

Cf. A083207 (Zumkeller numbers--numbers n whose divisors can be partitioned into two disjoint sets whose sums are both sigma(n)/2), A204830 (numbers n whose divisors can be partitioned into three disjoint sets whose sums are all sigma(n)/3).

Programs

  • Maple
    with(numtheory);with(combstruct);
    A204831:=proc(i)
    local S,R,Stop,Comb,c,d,k,m,n,s;
    for n from 1 to i do
      s:=sigma(n); c:=op(divisors(n));
      if (modp(s,4)=0 and 4*n<=s) then
         S:=1/4*s-n; R:=select(m->m<=S,[c]); Stop:=false;
         Comb:=iterstructs(Combination(R));
         while not (finished(Comb) or Stop) do
           Stop:=add(d,d=nextstruct(Comb))=S;
         od;
         if Stop then print(n); fi;
      fi;
    od;
    end:
    A204831(100000); # Paolo P. Lava, Jan 24 2012

A211224 Least k with precisely n partitions k = x + y satisfying sigma(k) = sigma(x) + sigma(y).

Original entry on oeis.org

3, 32, 117, 183, 393, 728, 933, 2193, 2528, 1173, 6136, 2990, 4070, 8211, 11488, 12616, 6112, 22287, 20584, 37468, 38675, 35245, 41416, 55825, 43616, 66385, 56810, 94040, 88736, 93975, 90068, 174515, 169376, 146965, 139196, 210453, 140576, 177248
Offset: 1

Views

Author

Paolo P. Lava, May 04 2012

Keywords

Comments

Subset of A211223.

Examples

			a(7)=933; 933 has 7 partitions of two numbers, x and y, for which sigma(933) = sigma(x) + sigma(y) = 1248. In fact:
sigma(311) + sigma(622) = 312 + 936 = 1248;
sigma(322) + sigma(611) = 576 + 672 = 1248;
sigma(370) + sigma(563) = 684 + 564 = 1248;
sigma(391) + sigma(542) = 432 + 816 = 1248;
sigma(398) + sigma(535) = 600 + 648 = 1248;
sigma(407) + sigma(526) = 456 + 792 = 1248;
sigma(442) + sigma(491) = 756 + 492 = 1248;
Furthermore 933 is the minimum number to have this property.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A211224:=proc(q)
    local a,b,i,j,n,v;
    v:=array(1..10000); for n from 1 to 10000 do v[n]:=0; od;
    a:=0;
    for n from 1 to q do
      b:=0;
      for i from 1 to trunc(n/2) do
        if sigma(i)+sigma(n-i)=sigma(n) then b:=b+1; fi; od;
      if b=a+1 then a:=b; print(n); j:=1;
         while v[b+j]>0 do a:=b+j; print(v[b+j]); j:=j+1; od;
      else if b>a+1 then if v[b]=0 then v[b]:=n; fi; fi; fi;
    od; end:
    A211224(1000);
  • PARI
    ct(n)=my(t=sigma(n));sum(i=1,n\2,sigma(i)+sigma(n-i)==t)
    v=vector(100);for(n=1,1e5,t=ct(n);if(t&&t<=#v&&!v[t],v[t]=n));v
    \\ Charles R Greathouse IV, May 04 2012

A210732 Numbers n for which sigma*(n)=sigma*(x)+sigma*(y), where n=x+y and sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

6, 9, 15, 18, 21, 24, 27, 30, 31, 33, 37, 39, 43, 44, 46, 47, 53, 56, 57, 62, 65, 66, 70, 73, 74, 75, 76, 78, 81, 83, 86, 88, 90, 91, 92, 93, 97, 99, 102, 103, 106, 107, 109, 110, 114, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 129, 131, 133, 135, 136
Offset: 3

Views

Author

Paolo P. Lava, May 10 2012

Keywords

Comments

Similar to A211223 but using anti-divisors.

Examples

			sigma*(127)=sigma*(45)+sigma*(82) that is 212=86+126.
In more than one way:
sigma*(133)=sigma*(50)+sigma*(83)=sigma*(52)+sigma*(81) that is
204=80+124=94+110.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A210732:=proc(q)
    local a,b,c,i,j,k,n;
    for n from 3 to q do
      a:=0;
      for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      for i from 1 to trunc(n/2) do
       b:=0; c:=0;
       for k from 2 to i-1 do if abs((i mod k)-k/2)<1 then b:=b+k; fi; od;
       for k from 2 to n-i-1 do if abs(((n-i) mod k)-k/2)<1 then c:=c+k; fi; od;
       if a=b+c then print(n); break; fi;
      od;
    od; end:
    A210732(10000);

A291457 Numbers n having a proper divisor d such that sigma(n) - k*d = k*n. Case k = 3.

Original entry on oeis.org

180, 240, 360, 420, 480, 540, 600, 660, 780, 840, 1080, 1320, 1560, 1890, 1920, 2016, 2040, 2184, 2280, 2352, 2376, 2688, 2760, 2856, 3000, 3192, 3360, 3480, 3720, 3744, 4284, 4320, 4440, 4680, 4704, 4896, 4920, 5160, 5292, 5640, 5796, 6048, 6360, 6552, 7080, 7128
Offset: 1

Views

Author

Paolo P. Lava, Aug 24 2017

Keywords

Comments

Case k=2 are the admirable numbers (A111592).

Examples

			One of the proper divisors of 1080 is 120 and sigma(1080) - 3*120 = 3600 - 360 = 3240 = 3*1080.
One of the proper divisors of 17850 is 6 and sigma(17850) - 3*6 = 53568 - 18 = 53550 = 3*17850.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,c,k; c:=0; a:=sort([op(divisors(q))]); for k from 1 to nops(a)-1 do if sigma(q)-h*a[k]=h*q then c:=1; break; fi; od; if c=1 then q; fi; end: seq(P(i,3),i=1..7200);
  • Mathematica
    k=3; Select[Range[7128], (t = DivisorSigma[1, #]/k - #; # > t > 0 && IntegerQ[t] && Mod[#, t] == 0) &] (* Giovanni Resta, Aug 25 2017 *)

A206025 Triangular numbers k whose divisors can be partitioned into three disjoint sets whose sums are all sigma(k)/3.

Original entry on oeis.org

120, 780, 2016, 3240, 4560, 5460, 7140, 7260, 9180, 10296, 10440, 12720, 19110, 21528, 23220, 26796, 28680, 28920, 32640, 34980, 37128, 39060, 41328, 49770, 51360, 56280, 61776, 64620, 64980, 73920, 79800, 97020, 100128, 103740, 107880, 114960, 115440, 122760
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

Divisors of triangular number k = 120 can be partitioned into three disjoint sets whose sums are all sigma(k)/3 and this value is triangular numbers (=120). Are there other such triangular numbers?

Examples

			Triangular number 780 is in sequence because sigma(780)/3 = 784 = 4+780 = 2+5+6+10+12+13+15+20+26+30+39+52+60+65+78+156+195 = 1+3+130+260+390 (summands are all divisors of 780).
		

Crossrefs

Intersection of A000217 and A204830.
Subsequence of A023197.
Cf. A000203.
Showing 1-10 of 12 results. Next