cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364309 Numbers k such that k, k+1 and k+2 have exactly 4 distinct prime factors.

Original entry on oeis.org

37960, 44484, 45694, 50140, 51428, 55130, 55384, 61334, 63364, 64294, 67164, 68264, 68474, 70004, 70090, 71708, 72708, 76152, 80444, 81548, 81718, 82040, 84434, 85490, 86240, 90363, 95380, 97382, 98020, 99084, 99384, 99428, 99788, 100164, 100490, 100594, 102254, 102542, 104804, 105994, 108204
Offset: 1

Views

Author

R. J. Mathar, Jul 18 2023

Keywords

Examples

			37960 = 2^3*5*13*73, 37961 = 7*11*17*29, and 37962 = 2*3^3*19*37 each have 4 distinct prime factors, so 37960 is in the sequence.
		

Crossrefs

Subsequence of A006073 and of A140078.
A176167 is a subsequence.
Cf. A364307 (2 factors), A364308 (3 factors), A364266 (5 factors), A364265 (6 factors), A001221, A087966, A168628.

Programs

  • Mathematica
    q[n_] := q[n] = PrimeNu[n] == 4; Select[Range[10^5], q[#] && q[#+1] && q[#+2] &] (* Amiram Eldar, Oct 01 2024 *)

Formula

a(1) = A087966(3).
a(n)+1 = A168628(n).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 4}.

A087967 Integers m such that gcd(2^m-1, m^2) is not a square number.

Original entry on oeis.org

18, 36, 72, 90, 100, 126, 144, 147, 162, 180, 198, 200, 234, 252, 288, 294, 300, 306, 324, 342, 360, 396, 400, 414, 441, 450, 468, 504, 522, 558, 576, 588, 600, 612, 630, 648, 666, 684, 700, 720, 735, 738, 774, 792, 800, 810, 828, 846, 882, 900, 936, 954
Offset: 1

Views

Author

Labos Elemer, Sep 22 2003

Keywords

Examples

			For m = 18: gcd(262143, 324) = 27 is not a square number, so 18 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], !IntegerQ[Sqrt[GCD[2^#-1, #^2]]] &]
  • PARI
    isok(m) = !issquare(gcd(2^m-1, m^2)); \\ Michel Marcus, Aug 27 2019

A087968 a(n) = gcd(1 + 2^n, n^2).

Original entry on oeis.org

1, 1, 9, 1, 1, 1, 1, 1, 27, 25, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 81, 1, 1, 25, 1, 1, 9, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 125, 9, 1, 1, 1, 121, 1, 9, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 289, 9, 25, 1, 1, 1, 1, 9, 1, 1, 169, 1, 1, 243, 1, 1, 1, 1, 1, 9, 1, 1, 25, 1, 1, 9, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Sep 22 2003

Keywords

Examples

			a(9) = gcd(2^9 + 1,9^2) = gcd(513,81) = 27.
		

Crossrefs

Programs

Showing 1-3 of 3 results.