A088000 a(n) is the sum of the palindromic divisors of n.
1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 16, 1, 10, 9, 15, 1, 21, 1, 12, 11, 36, 1, 24, 6, 3, 13, 14, 1, 17, 1, 15, 48, 3, 13, 25, 1, 3, 4, 20, 1, 19, 1, 84, 18, 3, 1, 24, 8, 8, 4, 7, 1, 21, 72, 22, 4, 3, 1, 21, 1, 3, 20, 15, 6, 144, 1, 7, 4, 15, 1, 33, 1, 3, 9, 7, 96, 12, 1, 20, 13, 3, 1, 23, 6, 3
Offset: 1
Examples
n=14: a(14)=1+2+7=10; n=101: a(101)=1+101=102;
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A088000 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if isA002113(d) then a := a+d ; end if; end do; a ; end proc: seq(A088000(n),n=1..100) ; # R. J. Mathar, Sep 09 2015
-
Mathematica
Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* Jayanta Basu, Aug 12 2013 *)
-
PARI
a(n) = sumdiv(n, d, my(dd=digits(d)); if (Vecrev(dd) == dd, d)); \\ Michel Marcus, Apr 06 2020
-
Python
def ispal(n): return n==int(str(n)[::-1]) def A088000(n): s=0 for i in range(1, n+1): if n%i==0 and ispal(i): s+=i return s print([A088000(n) for n in range(1,30)]) # Indranil Ghosh, Feb 10 2017