cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088016 To obtain a(n+1), add the square of the n-th partial sum to the n-th partial sum of the squares, then divide this result by a(n), for all n >= 0, with a(0)=1.

Original entry on oeis.org

1, 1, 6, 17, 56, 179, 576, 1851, 5950, 19125, 61474, 197597, 635140, 2041543, 6562172, 21092919, 67799386, 217928905, 700493182, 2251609065, 7237391472, 23263290299, 74775653304, 240352858739, 772570939222, 2483290023101
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2003

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 17*x^3 + 56*x^4 + 179*x^5 + 576*x^6 + ...
where A(x) * (1 - 3*x - x^2 + x^3) = 1 - 2*x + 2*x^2 - x^3.
Illustration of the initial terms: set a(0) = a(1) = 1, then
a(2) = ((1+1)^2 + (1^2 + 1^2))/1 = 6;
a(3) = ((1+1+6)^2 + (1^2 + 1^2 + 6^2))/6 = 17;
a(4) = ((1+1+6+17)^2 + (1^2 + 1^2 + 6^2 + 17^2))/17 = 56;
a(5) = ((1+1+6+17+56)^2 + (1^2 + 1^2 + 6^2 + 17^2 + 56^2))/56 = 179; ...
		

Crossrefs

Programs

  • GAP
    a:=[1,6,17];; for n in [4..40] do a[n]:=3*a[n-1]+a[n-2]-a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Oct 27 2019
  • Magma
    I:=[1,6,17]; [1] cat [n le 3 select I[n] else 3*Self(n-1) +Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Oct 27 2019
    
  • Maple
    seq(coeff(series((1-2*x+2*x^2-x^3)/(1-3*x-x^2+x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 27 2019
  • Mathematica
    LinearRecurrence[{3,1,-1},{1,1,6,17},40] (* Harvey P. Dale, Nov 06 2012 *)
  • PARI
    a(n)=(sum(k=0,n-1,a(k))^2+sum(k=0,n-1,a(k)^2))/a(n-1)
    
  • PARI
    my(x='x+O('x^40)); Vec((1-2*x+2*x^2-x^3)/(1-3*x-x^2+x^3)) \\ G. C. Greubel, Oct 27 2019
    
  • Sage
    def A088016_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-2*x+2*x^2-x^3)/(1-3*x-x^2+x^3)).list()
    A088016_list(40) # G. C. Greubel, Oct 27 2019
    

Formula

a(n) = 3*a(n-1) + a(n-2) - a(n-3) for n>3.
G.f.: (1-2*x+2*x^2-x^3) / (1-3*x-x^2+x^3).
G.f.: A(x) = A030186(x) * (1-x+x^2), where A030186(x) = gf of A030186.