cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088026 Number of "sets of even lists" for even n, cf. A000262.

Original entry on oeis.org

1, 2, 36, 1560, 122640, 15150240, 2695049280, 650948538240, 204637027795200, 81098021561356800, 39516616693678924800, 23204736106751520921600, 16152539421202464036556800, 13145716394493318293898240000, 12363004898960780220305909760000
Offset: 0

Views

Author

Vladeta Jovovic, Nov 02 2003

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add((i->
          b(n-i)*binomial(n-1, i-1)*i!)(2*j), j=1..n/2))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    Table[n!*SeriesCoefficient[E^(x^2/(1-x^2)),{x,0,n}],{n,0,40,2}] (* Vaclav Kotesovec, Feb 25 2014 *)
  • PARI
    x='x+O('x^66); /* (half) that many terms */
    v=Vec(serlaplace(exp(x^2/(1-x^2))));
    vector(#v\2,n, v[2*n-1])
    /* Joerg Arndt, Jul 29 2012 */

Formula

E.g.f.: exp(x^2/(1-x^2)) (even powers only, see PARI code).
E.g.f.: exp(x^2/(1-x^2)) = 4/(2-(x^2/(1-x^2))*G(0))-1 where G(k) = 1 - x^4/(x^4 + 4*(1-x^2)^2*(2*k+1)*(2*k+3)/G(k+1) ) (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
a(n) ~ 2^(2*n) * n^(2*n-1/4) * exp(sqrt(4*n)-2*n-1/2). - Vaclav Kotesovec, Feb 25 2014
D-finite with recurrence a(n) -2*(2*n-1)^2*a(n-1) +4*(n-1)*(n-2)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 01 2022
a(n) = A206703(2n,n). - Alois P. Heinz, Feb 19 2022

Extensions

More terms from Joerg Arndt, Jul 29 2012.