cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088127 E.g.f. exp(-x)*cosh(x)/(1-x)^2.

Original entry on oeis.org

1, 1, 4, 14, 72, 424, 2960, 23568, 211456, 2109056, 23150592, 277315840, 3599704064, 50331030528, 754122723328, 12054165272576, 204743835156480, 3682557441114112, 69920454322356224, 1397542619388248064, 29331932133035081728, 644973249444408197120
Offset: 0

Views

Author

Paul Barry, Sep 19 2003

Keywords

Comments

A088127(n)+A037256(n)=(n+1)! Binomial transform is A088128.

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[E^(-x)*Cosh[x]/(1-x)^2,{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    With[{nn=30},CoefficientList[Series[Exp[-x] Cosh[x]/(1-x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 24 2020 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(-x)*cosh(x)/(1-x)^2)) \\ Joerg Arndt, May 10 2013

Formula

Recurrence: a(n) = 2*(n-1)*a(n-1) - (n-4)*(n-1)*a(n-2) - 2*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ n!*n*(1+1/e^2)/2. - Vaclav Kotesovec, Oct 14 2012

A088129 Expansion of e.g.f. sinh(x)/(1-x)^2.

Original entry on oeis.org

0, 1, 4, 19, 104, 661, 4812, 39607, 364240, 3704617, 41310740, 501328411, 6578864184, 92843236669, 1402257345244, 22570640656831, 385718738160032, 6975222838783057, 133078088319220260, 2671441145266564387, 56287972249358876680, 1242089553461115778021
Offset: 0

Views

Author

Paul Barry, Sep 19 2003

Keywords

Comments

Binomial transform of A037256.

Crossrefs

Programs

  • Mathematica
    nmax=21; CoefficientList[Series[Sinh[x]/(1-x)^2, {x,0,nmax}], x]Range[0,nmax]! (* Stefano Spezia, Jan 15 2024 *)

Formula

a(n) = A001339(n) - A088128(n).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * (n-2*k)!. - Ilya Gutkovskiy, Apr 10 2022
Showing 1-2 of 2 results.