cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088144 Sum of primitive roots of n-th prime.

Original entry on oeis.org

1, 2, 5, 8, 23, 26, 68, 57, 139, 174, 123, 222, 328, 257, 612, 636, 886, 488, 669, 1064, 876, 1105, 1744, 1780, 1552, 2020, 1853, 2890, 1962, 2712, 2413, 3536, 4384, 3335, 5364, 3322, 3768, 4564, 7683, 7266, 8235, 4344, 8021, 6176, 8274
Offset: 1

Views

Author

Ed Pegg Jr, Nov 03 2003

Keywords

Comments

It is a result that goes back to Mirsky that the set of primes p for which p-1 is squarefree has density A, where A denotes the Artin constant (A = Product_{q prime} (1-1/(q*(q-1)))). Numerically A = 0.3739558136.. = A005596. More precisely, Sum_{p <= x} mu(p-1)^2 = Ax/log x + o(x/log x) as x tends to infinity. Conjecture: sum_{p <= x, mu(p-1)=1} 1 = (A/2)x/log x + o(x/log x) and sum_{p <= x, mu(p-1)=-1} 1 = (A/2)x/log x + o(x/log x). - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
The number of the primitive roots is A008330(n). - R. K. Guy, Feb 25 2011
If prime(n) == 1 (mod 4), then a(n) = prime(n)*A008330(n)/2. There are also primes of the form prime(n) == 3 (mod 4) where prime(n) | a(n), namely prime(n) = 19, 127, 151, 163, 199, 251,... The list of primes in both modulo-4 classes where prime(n)|a(n) is 5, 13, 17, 19, 29, 37, 41, 53, 61,... - R. K. Guy, Feb 25 2011
a(n) = A076410(n) at n = 1, 3, 7, 55,... (for p = 2, 5, 17, 257... and perhaps only for the Fermat primes). - R. K. Guy, Feb 25 2011

Examples

			For 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, the primitive roots are as follows: {{1}, {2}, {2, 3}, {3, 5}, {2, 6, 7, 8}, {2, 6, 7, 11}, {3, 5, 6, 7, 10, 11, 12, 14}, {2, 3, 10, 13, 14, 15}, {5, 7, 10, 11, 14, 15, 17, 19, 20, 21}, {2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27}}
		

References

  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 52.

Crossrefs

Programs

  • Mathematica
    PrimitiveRootQ[ a_Integer, p_Integer ] := Block[ {fac, res}, fac = FactorInteger[ p - 1 ]; res = Table[ PowerMod[ a, (p - 1)/fac[ [ i, 1 ] ], p ], {i, Length[ fac ]} ]; ! MemberQ[ res, 1 ] ] PrimitiveRoots[ p_Integer ] := Select[ Range[ p - 1 ], PrimitiveRootQ[ #, p ] & ]
    Total /@ Table[PrimitiveRootList[Prime[k]], {k, 1, 45}] (* Updated for Mathematica 13 by Harlan J. Brothers, Feb 27 2023 *)
  • PARI
    a(n)=local(r, p, pr, j); p=prime(n); r=vector(eulerphi(p-1)); pr=znprimroot(p); for(i=1, p-1, if(gcd(i, p-1)==1, r[j++]=lift(pr^i))); vecsum(r) \\ after Franklin T. Adams-Watters's code in A060749, Michel Marcus, Mar 16 2015