A089451 a(n) = mu(prime(n)-1), where mu is the Moebius function (A008683).
1, -1, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, 0, -1, 1, 0, 1, 0, -1, -1, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 0, 1, -1, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, 0, 1, 1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, -1, 0, 0
Offset: 1
Keywords
References
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 236.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Ed Pegg, Jr., Moebius Function (and squarefree numbers)
- Eric Weisstein's World of Mathematics, Moebius Function
Crossrefs
Programs
-
Magma
[MoebiusMu(NthPrime(n)-1): n in [1..100]]; // Vincenzo Librandi, Dec 23 2018
-
Mathematica
Table[MoebiusMu[Prime[n]-1], {n, 150}]
-
PARI
a(n)=moebius(prime(n)-1)
Formula
a(n) = A067460(n) - 1. - Benoit Cloitre, Nov 04 2003
If p = prime(n), then a(n) is congruent modulo p to the sum of all primitive roots modulo p. [Uspensky and Heaslet]. - Michael Somos, Feb 16 2020
Comments