A088307 Triangle, read by rows, T(n,k) = n^2 + k^2 if gcd(n,k)=1, otherwise 0.
2, 5, 0, 10, 13, 0, 17, 0, 25, 0, 26, 29, 34, 41, 0, 37, 0, 0, 0, 61, 0, 50, 53, 58, 65, 74, 85, 0, 65, 0, 73, 0, 89, 0, 113, 0, 82, 85, 0, 97, 106, 0, 130, 145, 0, 101, 0, 109, 0, 0, 0, 149, 0, 181, 0, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 0
Offset: 1
Examples
Triangle begins: 2; 5, 0; 10, 13, 0; 17, 0, 25, 0; 26, 29, 34, 41, 0; 37, 0, 0, 0, 61, 0; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Crossrefs
Programs
-
Magma
function A088307(n,k) if GCD(k,n) eq 1 then return n^2+k^2; else return 0; end if; return A088307; end function; [A088307(n,k): k in [1..n], n in [1..13]]; // G. C. Greubel, Dec 16 2022
-
Mathematica
Table[If[CoprimeQ[n,k],n^2+k^2,0],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Jul 13 2018 *)
-
SageMath
def A088307(n,k): if (gcd(n,k)==1): return n^2 + k^2 else: return 0 flatten([[A088307(n,k) for k in range(1,n+1)] for n in range(1,14)]) # G. C. Greubel, Dec 16 2022
Formula
T(n, n) = 2*A000007(n-1).
T(n, 1) = A002522(n).
T(2*n+1, 2) = A078370(n).
From G. C. Greubel, Dec 15 2022: (Start)
T(n, n-1) = A001844(n).
T(n, n-2) = ((1-(-1)^n)/2) * A008527((n+1)/2).
T(2*n, n) = 5*A000007(n-1).
T(2*n+1, n) = A079273(n+1).
T(2*n-1, n) = A190816(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A053818(n+1) + [n=1]. (End)
Comments