cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088307 Triangle, read by rows, T(n,k) = n^2 + k^2 if gcd(n,k)=1, otherwise 0.

Original entry on oeis.org

2, 5, 0, 10, 13, 0, 17, 0, 25, 0, 26, 29, 34, 41, 0, 37, 0, 0, 0, 61, 0, 50, 53, 58, 65, 74, 85, 0, 65, 0, 73, 0, 89, 0, 113, 0, 82, 85, 0, 97, 106, 0, 130, 145, 0, 101, 0, 109, 0, 0, 0, 149, 0, 181, 0, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 05 2003

Keywords

Comments

(n^2-k^2, 2*k*n, T(n,k)) is a primitive Pythagorean triple iff T(n,k) > 0.

Examples

			Triangle begins:
   2;
   5,  0;
  10, 13,  0;
  17,  0, 25,  0;
  26, 29, 34, 41,  0;
  37,  0,  0,  0, 61, 0;
  ...
		

Crossrefs

Programs

  • Magma
    function A088307(n,k)
      if GCD(k,n) eq 1 then return n^2+k^2;
      else return 0;
      end if; return A088307;
    end function;
    [A088307(n,k): k in [1..n], n in [1..13]]; // G. C. Greubel, Dec 16 2022
    
  • Mathematica
    Table[If[CoprimeQ[n,k],n^2+k^2,0],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Jul 13 2018 *)
  • SageMath
    def A088307(n,k):
        if (gcd(n,k)==1): return n^2 + k^2
        else: return 0
    flatten([[A088307(n,k) for k in range(1,n+1)] for n in range(1,14)]) # G. C. Greubel, Dec 16 2022

Formula

T(n, n) = 2*A000007(n-1).
T(n, 1) = A002522(n).
T(2*n+1, 2) = A078370(n).
Sum_{k=1..n} A057427(T(n,m)) = A000010(n).
From G. C. Greubel, Dec 15 2022: (Start)
T(n, n-1) = A001844(n).
T(n, n-2) = ((1-(-1)^n)/2) * A008527((n+1)/2).
T(2*n, n) = 5*A000007(n-1).
T(2*n+1, n) = A079273(n+1).
T(2*n-1, n) = A190816(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A053818(n+1) + [n=1]. (End)