A088309 Number of equivalence classes of n X n (0,1)-matrices with all rows distinct and all columns distinct.
1, 2, 5, 44, 1411, 159656, 62055868, 82060884560, 371036717493194, 5812014504668066528, 320454239459072905856944, 63156145369562679089674952768, 45090502574837184532027563736271152, 117910805393665959622047902193019284914432, 1139353529410754170844431642119963019965901238144
Offset: 0
Keywords
Examples
a(2) = 5: 00/01, 00/10, 01/10, 01/11, 10/11.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..59
- G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
Crossrefs
Programs
-
Magma
A088309:= func< n | (&+[Binomial(2^k,n)*StirlingFirst(n,k): k in [0..n]]) >; [A088309(n): n in [0..30]]; // G. C. Greubel, Dec 15 2022
-
Mathematica
A088309[n_]:= A088309[n]=Sum[Binomial[2^j,n]*StirlingS1[n,j], {j,0,n}]; Table[A088309[n], {n,0,30}] (* G. C. Greubel, Dec 15 2022 *)
-
PARI
a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(2^k, n)); \\ Michel Marcus, Dec 16 2022
-
SageMath
@CachedFunction def A088309(n): return (-1)^n*sum((-1)^k*binomial(2^k, n)*stirling_number1(n, k) for k in (0..n)) [A088309(n) for n in range(31)] # G. C. Greubel, Dec 15 2022
Formula
a(n) = Sum_{k=0..n} Stirling1(n, k)*binomial(2^k, n). - Vladeta Jovovic, Nov 07 2003
a(n) = A088310(n) / n!.
Extensions
Suggested by Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
a(0)-a(5) from W. Edwin Clark, Nov 07 2003
Comments