A088326 Triangle T(n,k) (n>=1, 1<=k<=n) read by rows, giving number of Piet Hut's "coat-hanger" arrangements: unlabeled forests of rooted trees with n edges and k connected components, in which the outdegree of each node is <= 2 and the symmetric group acts on the components.
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 5, 3, 1, 1, 11, 12, 6, 3, 1, 1, 23, 23, 14, 6, 3, 1, 1, 46, 52, 29, 15, 6, 3, 1, 1, 98, 109, 68, 31, 15, 6, 3, 1, 1, 207, 244, 147, 74, 32, 15, 6, 3, 1, 1, 451, 532, 337, 163, 76, 32, 15, 6, 3, 1, 1, 983, 1196, 757, 380, 169, 77, 32, 15, 6, 3, 1, 1
Offset: 1
Examples
See A088325 for illustration. Triangle begins 1 1 1 2 1 1 3 3 1 1 6 5 3 1 1 11 12 6 3 1 1 ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0, (t-> t*(1-t)/2)(g(n/2)))+add(g(i)*g(n-i), i=1..n/2)) end: b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial( g(i+1)+j-1, j), j=0..min(n/i, p))))) end: T:= (n, k)-> b(n$2, k): seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Sep 11 2017
-
Mathematica
g[n_] := g[n] = If[n<2, n, If[OddQ[n], 0, Function[t, t*(1-t)/2][g[n/2]]] + Sum[g[i]*g[n - i], {i, 1, n/2}]]; b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[g[i+1]+j-1, j], {j, 0, Min[n/i, p]}]]]]; T[n_, k_] := b[n, n, k]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
Formula
G.f.: exp( Sum_{k>=1} z^k*B(x^k)/k ), where B(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + ... = G001190(x)/x - 1 and G001190 is the g.f. for the Wedderburn-Etherington numbers A001190.
G.f.: Product_{j>=1} 1/(1-y*x^j)^A001190(j+1). - Alois P. Heinz, Sep 11 2017
Extensions
More terms from Vladeta Jovovic, Nov 06 2003