cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355040 Expansion of the continued fraction 1 / (1-q / (1-q-q^2 / (1-q-q^2-q^3 / (1-q-q^2-q^3-q^4 / (...))))).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 96, 266, 742, 2079, 5843, 16457, 46423, 131099, 370527, 1047858, 2964698, 8390837, 23754234, 67260645, 190478213, 539484321, 1528094423, 4328632609, 12262352881, 34738763766, 98416624789, 278825903115, 789961599608, 2238129694407, 6341171821627, 17966261019890, 50903653156245
Offset: 0

Views

Author

Joerg Arndt, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x/(1 - x + ContinuedFractionK[-x^k, 1 - x*(1 - x^k)/(1 - x), {k, 2, nmax}])), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2022 *)
    A355040List[nmax_] := Module[{a, b, q},
    a = ContinuedFractionK[-q^k, (q^(k + 1) - 2 q + 1)/(q - 1), {k, 0, nmax}];
    b = Series[a, {q, 0, nmax}]; CoefficientList[b, q] ];
    A355040List[32] (* Peter Luschny, Jun 20 2022 *)
  • PARI
    N=44; q='q+O('q^N);
    f(n) = 1 - sum(k=1,n-1,q^k);
    s=1; forstep(j=N, 1, -1, s = q^j/s; s = f(j) - s ); s = 1/s;
    Vec(s)

Formula

a(n) ~ c * d^n, where d = 2.8333645039948803621658813720055524872119... and c = 0.1710130167563241590871776261530008679... - Vaclav Kotesovec, Jun 16 2022
a(n) = [q^n] K_{k>=0} -q^k / ((q^(k + 1) - 2*q + 1)/(q - 1)), where K is Gauss's notation for continued fractions. - Peter Luschny, Jun 20 2022

A292854 Expansion of 1/(1 + x + x/(1 + x^2 + x^2/(1 + x^3 + x^3/(1 + x^4 + x^4/(1 + ...))))), a continued fraction.

Original entry on oeis.org

1, -2, 4, -6, 8, -12, 18, -24, 32, -44, 58, -76, 100, -128, 164, -210, 264, -332, 416, -516, 640, -790, 968, -1184, 1444, -1752, 2120, -2560, 3078, -3692, 4420, -5272, 6276, -7456, 8832, -10444, 12326, -14512, 17056, -20012, 23432, -27392, 31972, -37248, 43332, -50338, 58380, -67616, 78208, -90328, 104196
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2017

Keywords

Crossrefs

Cf. A088354.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 + x + ContinuedFractionK[x^k, 1 + x^(k + 1), {k, 1, nmax}]), {x, 0, nmax}], x]

A296201 Expansion of 1/(1 - x/(1 - x/(1 - x^2/(1 - x/(1 - x^3/(1 - x/(1 - x^4/(1 - ...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 50, 120, 290, 704, 1714, 4181, 10212, 24965, 61070, 149458, 365888, 895932, 2194178, 5374262, 13164426, 32248616, 79002180, 193544446, 474168003, 1161691893, 2846131055, 6973047572, 17084140245, 41856763371, 102550935614, 251254982356, 615588531011, 1508227753087, 3695249380509
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^(1 + k (1 + (-1)^k)/4), 1, {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

a(n) ~ c * d^n, where d = 2.450066970712861209761227155593662591019701927336233634485900133440192... and c = 0.21656595617747023258115906735909123622190252865232858964820650877171... - Vaclav Kotesovec, Sep 18 2021

A295836 Expansion of e.g.f. 1/(1 - x - x/((1 - x^2)^(1/2) - x/((1 - x^3)^(1/3) - x/((1 - x^4)^(1/4) - ...)))), a continued fraction.

Original entry on oeis.org

1, 2, 10, 87, 1080, 17545, 352380, 8440425, 234965360, 7457438961, 265861218420, 10520716922485, 457671900756840, 21711259726987545, 1115540615067642764, 61720568687920627485, 3658760405598389451360, 231360521536071025523425, 15545857268826205753051620, 1106160524990742248108302221
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Cf. A088354.

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x, (1 - x^k)^(1/k), {k, 2, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ n! * c * 4^n / n^(3/2), where c = 3.9289476103424541066892... - Vaclav Kotesovec, Nov 28 2017
Showing 1-4 of 4 results.