cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088375 Decimal expansion of a postulated upper estimate for the complex Grothendieck constant.

Original entry on oeis.org

1, 4, 0, 4, 5, 7, 5, 9, 3, 4, 6, 6, 3, 7, 4, 2, 0, 3, 2, 7, 7, 3, 9, 5, 8, 4, 7, 1, 5, 4, 8, 1, 4, 3, 7, 4, 3, 2, 3, 4, 6, 1, 1, 8, 3, 0, 6, 5, 2, 7, 1, 1, 9, 3, 6, 1, 1, 8, 0, 8, 9, 6, 1, 8, 5, 8, 7, 7, 1, 7, 1, 9, 4, 4, 8, 2, 5, 7, 7, 2, 2, 9, 8, 6, 5, 2, 8, 9, 8, 6, 2, 7, 0, 8, 7, 4, 4, 7, 8, 9, 3, 5
Offset: 1

Views

Author

Eric W. Weisstein, Sep 28 2003

Keywords

Examples

			1.404575934663742032773958471548143743234611830652711936118...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.11, p. 237.

Crossrefs

Programs

  • Maple
    Re(evalf(1/(2*EllipticK(I)-EllipticE(I)), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    First[ RealDigits[ N[1/(2*EllipticK[-1] - EllipticE[-1] ), 120], 10, 102]](* Jean-François Alcover, Jun 07 2012, after Eric W. Weisstein *)
    RealDigits[(Sqrt[8 Pi] Gamma[3/4]^2)/(Pi^2 - 2 Gamma[3/4]^4), 10, 102][[1]] (* Jan Mangaldan, Nov 23 2020 *)
  • PARI
    magm(a, b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a, b, c] = [(a+b)/2, c+z, c-z]); (a+b)/2
    E(x)=Pi/2/agm(1,sqrt(1-x))*magm(1,1-x)
    K(x)=Pi/2/agm(1,sqrt(1-x))
    1/(2*K(-1)-E(-1)) \\ Charles R Greathouse IV, Aug 02 2018

Formula

Equals (sqrt(8*Pi)*Gamma(3/4)^2)/(Pi^2 - 2*Gamma(3/4)^4). - Jan Mangaldan, Nov 23 2020