A088375 Decimal expansion of a postulated upper estimate for the complex Grothendieck constant.
1, 4, 0, 4, 5, 7, 5, 9, 3, 4, 6, 6, 3, 7, 4, 2, 0, 3, 2, 7, 7, 3, 9, 5, 8, 4, 7, 1, 5, 4, 8, 1, 4, 3, 7, 4, 3, 2, 3, 4, 6, 1, 1, 8, 3, 0, 6, 5, 2, 7, 1, 1, 9, 3, 6, 1, 1, 8, 0, 8, 9, 6, 1, 8, 5, 8, 7, 7, 1, 7, 1, 9, 4, 4, 8, 2, 5, 7, 7, 2, 2, 9, 8, 6, 5, 2, 8, 9, 8, 6, 2, 7, 0, 8, 7, 4, 4, 7, 8, 9, 3, 5
Offset: 1
Examples
1.404575934663742032773958471548143743234611830652711936118...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.11, p. 237.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Grothendieck's Constant.
Programs
-
Maple
Re(evalf(1/(2*EllipticK(I)-EllipticE(I)), 120)); # Vaclav Kotesovec, Apr 22 2015
-
Mathematica
First[ RealDigits[ N[1/(2*EllipticK[-1] - EllipticE[-1] ), 120], 10, 102]](* Jean-François Alcover, Jun 07 2012, after Eric W. Weisstein *) RealDigits[(Sqrt[8 Pi] Gamma[3/4]^2)/(Pi^2 - 2 Gamma[3/4]^4), 10, 102][[1]] (* Jan Mangaldan, Nov 23 2020 *)
-
PARI
magm(a, b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a, b, c] = [(a+b)/2, c+z, c-z]); (a+b)/2 E(x)=Pi/2/agm(1,sqrt(1-x))*magm(1,1-x) K(x)=Pi/2/agm(1,sqrt(1-x)) 1/(2*K(-1)-E(-1)) \\ Charles R Greathouse IV, Aug 02 2018
Formula
Equals (sqrt(8*Pi)*Gamma(3/4)^2)/(Pi^2 - 2*Gamma(3/4)^4). - Jan Mangaldan, Nov 23 2020